Jumat, 08 Juli 2011

ILMU BAHAN

Karakteristik Beberapa Jenis Bahan Penghantar Listrik

Seperti telah kita ketahui, bahwa untuk pelaksanaan penyaluran energi listrik dapat dilakukan dengan dua cara, yaitu berupa saluran udara dan kabel tanah. Pada saluran Udara, terutama hantaran udara telanjang biasanya banyak menggunakan kawat penghantar yang terdiri atas: kawat tembaga telanjang (BCC, singkatan dari Bare Cooper Cable), Aluminium telanjang (AAC, singkatan dari All Aluminium Cable), Campuran yang berbasis aluminium (Al-Mg-Si), Aluminium berinti baja (ACSR, singkatan dari Aluminium Cable Steel Reinforced) dan Kawat baja yang berisi lapisan tembaga (Cooper Weld).

Sedangkan pada saluran kabel tanah, biasanya banyak menggunakan kabel dengan penghantar jenis tembaga dan aluminium, perkembangan yang sangat dominan pada saluran kabel tanah adalah dari sisi bahan isolasinya, dimana pada saat awal banyak menggunakan isolasi berbahan kertas dengan perlindungan mekanikal berupa timah hitam, kemudian menggunakan minyak ( jenis kabel ini dinamakan GPLK atau Gewapend Papier Lood Kabel yang merupakan standar belanda dan NKBA atau Normal Kabel mit Bleimantel Aussenumheullung yang merupakan standar jerman, dan jenis bahan isolasi yang terkini adalah isolasi buatan berupa PVC (Polyvinyl Chloride) dan XLPE (Cross-Linked Polyethylene). Jenis bahan isolasi PVC dan XLPE pada saat ini telah berkembang pesat dan merupakan bahan isolasi yang andal.

Di waktu yang lalu, bahan yang banyak digunakan untuk saluran listrik adalah jenis tembaga (Cu). Namun karena harga tembaga yang tinggi dan tidak stabil bahkan cenderung naik, aluminium mulai dilirik dan dimanfaatkan sebagai bahan kawat saluran listrik, baik saluran udara maupun saluran kabel tanah. Lagipula, kawat tembaga sering dicuri karena bahannya dapat dimanfaatkan untuk pembuatan berbagai produk lain.

Suatu ikhtisar akan disampaikan dibawah ini mengenai berbagai jenis logam atau campurannya yang dipakai untuk kawat saluran listrik, yaitu:

• Tembaga elektrolitik, yang harus memenuhi beberapa syarat normalisasi, baik mengenai daya hantar listrik maupun mengenai sifat-sifat mekanikal.

• Brons, yang memiliki kekuatan mekanikal yang lebih besar, namun memiliki daya hantar listrik yang rendah. Sering dipakai untuk kawat pentanahan.

• Aluminium, yang memiliki kelebihan karena materialnya ringan sekali. Kekurangannya adalah daya hantar listrik agak rendah dan kawatnya sedikit kaku. Harganya sangat kompetitif. Karenanya merupakan saingan berat bagi tembaga, dan dapat dikatakan bahwa secara praktis kini mulai lebih banyak digunakan untuk instalasi-instalasi listrik arus kuat yang baru dari pada menggunakan tembaga.

• Aluminium berinti baja, yang biasanya dikenal sebagai ACSR (Aluminium Cable Steel Reinforced), suatu kabel penghantar aluminium yang dilengkapi dengan unit kawat baja pada inti kabelnya. Kawat baja itu diperlukan guna meningkatkan kekuatan tarik kabel. ACSR ini banyak digunakan untuk kawat saluran hantar udara.

• Aldrey, jenis kawat campuran antara aluminium dengan silicium (konsentrasinya sekitar 0,4 % – 0,7 %), Magnesium (konsentrasinya antara 0,3 % - 0,35 %) dan ferum (konsentrasinya antara 0,2 % - 0,3 %). Kawat ini memiliki kekuatan mekanikal yang sangat besar, namun daya hantar listriknya agak rendah.

• Cooper-weld, suatu kawat baja yang disekelilingnya diberi lapisan tembaga.

• Baja, bahan yang paling banyak digunakan sebagai kawat petir dan juga sebagai kawat pentanahan.

Berdasarkan ikhtisar diatas, dapat dikatakan bahwa bahan yang terpenting untuk saluran penghantar listrik adalah tembaga dan aluminium, sehingga kedua bahan tersebut banyak digunakan sebagai kawat pengantar listrik, baik saluran hantar udara maupun kabel tanah.

Proses Terjadinya Busur Api Pada Circuit Breaker

Pada waktu pemutusan atau penghubungan suatu rangkaian sistem tenaga listrik maka pada PMT (circuit breaker) akan terjadi busur api, hal tersebut terjadi karena pada saat kontak PMT dipisahkan , beda potensial diantara kontak akan menimbulkan medan elektrik diantara kontak tersebut, seperti ditunjukkan pada gambar dibawah.

Arus yang sebelumnya mengalir pada kontak akan memanaskan kontak dan menghasilkan emisi thermis pada permukaan kontak. Sedangkan medan elektrik menimbulkan emisi medan tinggi pada kontak katoda (K). Kedua emisi ini menghasilkan elektron bebas yang sangat banyak dan bergerak menuju kontak anoda (A). Elektron-elektron ini membentur molekul netral media isolasi dikawasan positif, benturan-benturan ini akan menimbulkan proses ionisasi. Dengan demikian, jumlah elektron bebas yang menuju anoda akan semakin bertambah dan muncul ion positif hasil ionisasi yang bergerak menuju katoda, perpindahan elektron bebas ke anoda menimbulkan arus dan memanaskan kontak anoda.

Ion positif yang tiba di kontak katoda akan menimbulkan dua efek yang berbeda. Jika kontak terbuat dari bahan yang titik leburnya tinggi, misalnya tungsten atau karbon, maka ion positif akan akan menimbulkan pemanasan di katoda. Akibatnya, emisi thermis semakin meningkat. Jika kontak terbuat dari bahan yang titik leburnya rendah, misal tembaga, ion positif akan menimbulkan emisi medan tinggi. Hasil emisi thermis ini dan emisi medan tinggi akan melanggengkan proses ionisasi, sehingga perpindahan muatan antar kontak terus berlangsung dan inilah yang disebut busur api.



Untuk memadamkan busur api tersebut perlu dilakukan usaha-usaha yang dapat menimbulkan proses deionisasi, antara lain dengan cara sebagai berikut:

1. Meniupkan udara ke sela kontak, sehingga partikel-partikel hasil ionisai dijauhkan dari sela kontak.
2. Menyemburkan minyak isolasi kebusur api untuk memberi peluang yang lebih besar bagi proses rekombinasi.
3. Memotong busur api dengan tabir isolasi atau tabir logam, sehingga memberi peluang yang lebih besar bagi proses rekombinasi.
4. Membuat medium pemisah kontak dari gas elektronegatif, sehingga elektron-elektron bebas tertangkap oleh molekul netral gas tersebut.

Jika pengurangan partikel bermuatan karena proses deionisasi lebih banyak daripada penambahan muatan karena proses ionisasi, maka busur api akan padam. Ketika busur api padam, di sela kontak akan tetap ada terpaan medan elektrik. Jika suatu saat terjadi terpaan medan elektrik yang lebih besar daripada kekuatan dielektrik media isolasi kontak, maka busur api akan terjadi lagi.

Sifat-Sifat Listrik Dielektrik

Dalam menentukan dimensi suatu sistem isolasi, dibutuhkan pengetahuan yang pasti mengnai jenis, besaran dan durasi tekanan elektrik yang akan dialami bahan isolasi tersebut, dan disamping itu juga perlu untuk mempertimbangkan kondisi sekitar dimana isolasi akan ditempatkan. selain itu, perlu juga untuk mengetahui sifat-sifat dari bahan isolasi sehingga dapat dipilih bahan-bahan yang tepat untuk suatu sistem isolasi, dengan demikian akan dihasilkan suatu rancangan yang paling ekonomis.

Fungsi yang penting dari suatu bahan isolasi adalah:
1. Untuk mengisolasi antara suatu penghantar dengan penghantar lainnya. Misalnya antara konduktor fasa dengan konduktor fasa lainnya, atau konduktor fasa dengan tanah.
2. Untuk menahan gaya mekanis akibat adanya arus pada konduktor yang diisolasi,
3. Mampu menahan tekanan yang diakibatkan panas dan reaksi kimia.

Tekanan yang diakibatkan oleh medan listrik, gaya mekanik, thermal dan reaksi kimia dapat saja terjadi serentak, sehingga perlu diketahui efek bersama dari semua parameter tersebut, dengan kata lain suatu bahan isolasi dinyatakan ekonomis jika bahan tersebut dapat menahan semua tekanan tersebut dalam jangka waktu yang lama.

Sifat listrik yang dibutuhkan untuk suatu bahan isolasi adalah sebagai berikut:
1. Mempunyai kekuatan dielektrik (KD) yang tinggi, agar dimensi sistem isolasi menjadi kecil dan penggunaan bahan semakin sedikit, sehingga harganya pun akan semakin murah.
2. Rugi-rugi dielektriknya rendah, agar suhu bahan isolasi tidak melebihi batas yang ditentukan.
3. Memiliki kekuatan kerak (tracking strength) yang tinggi, agar tidak terjadi erosi karena tekanan listrik permukaan.
4. Memiliki konstanta dielektrik yang tepat dan cocok, sehingga membuat arus pemuatan (charging current) tidak melebihi batas ayang diijinkan.

Bahan isolasi juga sekaligus merupakan bahan konstruksi peralatan, oleh karena itu ia juga memikul beban mekanis, sehingga bahan isolasi harus memenuhi persyaratan mekanis yang dibutuhkan. Sifat mekanis yang dibutuhkan tergantung pada pemakaian, seperti diberikan dibawah ini.

- Isolator hantaran udara, sifat mekanis terpentingnya Kekuatan regangan (tensile strength)

- Isolator pendukung pada gardu, sifat mekanis terpentingnya Kekuatan tekuk (bending strength)

- Isolator antenna, sifat mekanis terpentingnya Kekuatan tekan (pressure strength)

- Pemutus daya (circuit breaker), sifat mekanis terpentingnya Kekuatan tekanan dadakan (bursting pressure withstand)

karakteristik mekanis, seperti elastisitas, kekenyalan dan lain-lain, mempunyai hubungan yang nyata dengan tekanan dan ketepatan rancangan.

Peralatan-peralatan listrik akan mengalami kenaikan suhu selama beroperasi, baik pada tegangan kerja normal maupun dalam kondisi gangguan, sehingga bahan isolasi harus memiliki sifat themal sebagai berikut:
- kemampuan untuk menahan panas tinggi (daya tahan panas)
- kerentanan terhadap perubahan bentuk pada keadaan panas.
- konduktivitas panas tinggi.
- koefisien muai panas rendah.
- tidak mudah terbakar.
- tahan terhadap busur api, dan lain-lain.

bahan isolasi harus dapat menyesuaikan diri terhadap lingkungan dimana bahan itu digunakan. oleh karena itu bahan isolasi harus memiliki kemampuan sebagai berikut:
- memiliki daya tahan terhadap minyak dan ozon.
- memiliki kekedapan dan kekenyalan higroskopis yang tinggi.
- daya serap air rendah.
- stabil ketika mengalami radiasi.

Bahan isolasi untuk sistem tegangan tinggi sering menetapkan beberapa persyaratan, dan diantaranya ada yang saling bertentangan. Oleh karena itu dalam pemilihan bahan isolasi untuk suatu keperluan khusus sering dilakukan dengan mencari kompromi antara penyimpangan kebutuhan dengansifat yang diinginkan, sehingga pemilihan yang benar-benar memuaskan tidak terpenuhi.

ada enam sifat listrik dielektrik, yaitu:
1. Kekuatan dielektrik
2. Konduktansi
3. Rugi-rugi dielektrik
4. Tahanan isolasi
5. Peluahan parsial (partial discharge)
6. Kekuatan kerak isolasi (tracking strength)

Ilmu Bahan Listrik - Bahan Penyekat

Sifat-Sifat Bahan Penyekat

Bahan penyekat digunakan untuk memisahkan bagian-bagian yang bertegangan. Untuk itu pemakaian bahan penyekat perlu mempertimbangkan sifat kelistrikanya. Di samping itu juga perlu mempertimbangkan sifat termal, sifat mekanis, dan sifat kimia.
Sifat kelistrikan mencakup resistivitas, permitivitas, dan kerugian dielektrik. Penyekat membutuhkan bahan yang mempunyai resistivitas yang besar agar arus yang bocor sekecil mungkin (dapat diabaikan). Yang perlu diperhatikan di sini adalah bahwa bahan isolasi yang higroskopis hendaknya dipertimbangkan penggunaannya pada tempat-tempat yang lembab karena resistivitasnya akan turun. Resistivitas juga akan turun jika tegangan yang diberikan naik.

Besarnya kapasitansi bahan isolasi yang berfungsi sebagai dielektrik ditentukan oleh permitivitasnya, di samping jarak dan luas permukaannya. Besarnya permitivitas udara adalah 1,00059, sedangakan untuk zat padat dan zat cair selalu lebih besar dari itu. Apabila bahan isolasi diberi tegangan bolak-balik maka akan terdapat energi yang diserap oleh bahan tersebut. Besarnya kerugian energi yang diserap bahan isolasi tersebut berbanding lurus dengan tegangan, frekuensi, kapasitansi, dan sudut kerugian dielektrik. Sudut tersebut terletak antara arus kapasitif dan arus total (Ic + Ir).

Suhu juga berpengaruh terhadap kekuatan mekanis, kekerasan, viskositas, ketahanan terhadap pengaruh kimia dan sebagainya. Bahan isolasi dapat rusak diakibatkan oleh panas pada kurun waktu tertentu. Waktu tersebut disebut umur panas bahan isolasi. Sedangakan kemampuan bahan menahan suhu tertentu tanpa terjadi kerusakan disebut ketahanan panas. Menurut IEC (International Electrotechnical Commission) didasarkan atas batas suhu kerja bahan, bahan isolasi yang digunakan pada suhu di bawah nol (missal pada pesawat terbang, pegunungan) perlu juga diperhitungkan karena pada suhu di bawah nol bahan isolasi akan menjadi keras dan regas. Pada mesin-mesin listrik, kenaikan suhu pada penghantar dipengaruhi oleh resistansi panas bahan isolasi. Bahan isolasi tersebut hendaknya mampu meneruskan panas yang didesipasikan oleh penghantar atau rangkaian magnetik ke udara sekelilingnya.

Kemampuan larut bahan isolasi, resistansi kimia, higroskopis, permeabilitas uap, pengaruh tropis, dan resistansi radio aktif perlu dipertimbangkan pada penggunaan tertentu. Kemampuan larut diperlukan dalam menentukan macam bahan pelarut untuk suatu bahan dan dalam menguji kemampuan bahan isolasi terhadap cairan tertentu selama diimpregnasi atau dalam pemakaian. Kemampuan larut bahan padat dapat dihitung berdasarkan banyaknya bagian permukaan bahan yang dapat larut setiap satuan waktu jika diberi bahan pelarut. Umumnya kemampuan larut bahan akan bertambah jika suhu dinaikkan.

Ketahanan terhadap korosi akibat gas, air, asam, basa, dan garam bahan isolasi juga nervariasi antara satu pemakaian bahan isolasi di daerah yang konsentrasi kimianya aktif, instalasi tegangan tinggi, dan suhu di atas normal. Uap air dapat memperkecil daya isolasi bahan. Karena bahan isolasi juga mempunyai sifat higroskopis maka selama penyimpanan atau pemakaian diusahakan agar tidak terjadi penyerapan uap air oleh bahan isolasi, dengan memberikan bahan penyerap uap air, yaitu senyawa P2O5 atau CaC12. Bahan yang molekulnya berisi kelompok hidroksil (OH) higrokopisitasnya relative besar dibanding bahan parafin dan polietilin yang tidak dapat menyerap uap air. Bahan isolasi hendaknya juga mempunyai permeabilitas uap (kemampuan untuk dilewati uap) yang besar, khususnya bagi bahan yang digunakan untuk isolasi kabel dan rumah kapasitor. Di daerah tropis basah dimungkinkan tumbuhnya jamur dan serangga. Suhu yang tinggi disertai kelembaban dalam waktu lama dapat menyebabkan turunnya kemampuan isolasi. Oleh karena bahan isolasi hendaknya dipisi bahan anti jamur (paranitro phenol, dan pentha chloro phenol).

Pemakaian bahan isolasi sering dipengaruhi bermacam-macam energi radiasi yang dapat berpengaruh dan mengubah sifat bahan isolasi. Radiasi sinar matahari mempengaruhi umur bahan, khususnya jika bersinggungan dengan oksigen. Sinar ultra violet dapat merusak beberapa bahan organic. T yaitu kekuatan mekanik elastisitas. Sinar X sinar-sinar dari reactor nuklir, partikel-partikel radio isotop juga mempengaruhi kemampuan bahan isolasi. Sifat mekanis bahan yang meliputi kekuatan tarik, modulus elastisitas, dan derajat kekerasan bahan isolasi juga menjadi pertimbangan dalam memilih suatu jenis bahan isolasi.

Pembagian Kelas Bahan Penyekat

Bahan penyekat listrik dapat dibagi atas beberapa kelas berdasarkan suhu kerja maksimum, yaitu sebagai berikut:

1. Kelas Y, suhu kerja maksimum 90°C
Yang termasuk dalam kelas ini adalah bahan berserat organis (seperti Katun, sutera alam, wol sintetis, rayon serat poliamid, kertas, prespan, kayu, poliakrilat, polietilen, polivinil, karet, dan sebagainya) yang tidak dicelup dalam bahan pernis atau bahan pencelup lainnya. Termasuk juga bahan termoplastik yang dapat lunak pada suhu rendah.

2. Kelas A, suhu kerja maksimum 150°C
Yaitu bahan berserat dari kelas Y yang telah dicelup dalam pernis aspal atau kompon, minyak trafo, email yang dicampur dengan vernis dan poliamil atau yang terendam dalam cairan dielektrikum (seperti penyekat fiber pada transformator yang terendam minyak). Bahan -bahan ini adalah katun, sutera, dan kertas yang telah dicelup, termasuk kawat email (enamel) yang terlapis damar-oleo dan damar-polyamide.

3. Kelas E, suhu kerja maksimum 120°C
Yaitu bahan penyekat kawat enamel yang memakai bahan pengikat polyvinylformal, polyurethene dan damar epoxy dan bahan pengikat lain sejenis dengan bahan selulosa, pertinaks dan tekstolit, film triacetate, film dan serat polyethylene terephthalate.

4. Kelas B, suhu kerja maksimum 130°C
Yaitu Yaitu bahan non-organik (seperti : mika, gelas, fiber, asbes) yang dicelup atau direkat menjadi satu dengan pernis atau kompon, dan biasanya tahan panas (dengan dasar minyak pengering, bitumin sirlak, bakelit, dan sebagainya).

5. Kelas F, suhu kerja maksimum 155°C
Bahan bukan organik dicelup atau direkat menjadi satu dengan epoksi, poliurethan, atau vernis yang tahan panas tinggi.

6. Kelas H, suhu kerja maksimum 180°C
Semua bahan komposisi dengan bahan dasar mika, asbes dan gelas fiber yang dicelup dalam silikon tanpa campuran bahan berserat (kertas, katun, dan sebagainya). Dalam kelas ini termasuk juga karet silikon dan email kawat poliamid murni.

7. Kelas C, suhu kerja diatas 180°C
Bahan anorganik yang tidak dicelup dan tidak terikat dengan substansi organic, misalnya mika, mikanit yang tahan panas (menggunakan bahan pengikat anorganik), mikaleks, gelas, dan bahan keramik. Hanya satu bahan organik saja yang termasuk kelas C yaitu politetra fluoroetilen (Teflon).

Macam-macam bahan penyekat
• Bahan penyekat bentuk padat, bahan listrik ini dapat dikelompokkan menjadi beberapa macam, diantaranya yaitu: bahan tambang, bahan berserat, gelas, keramik, plastik, karet, ebonit dan bakelit, dan bahan-bahan lain yang dipadatkan.
• Bahan penyekat bentuk cair, jenis penyekat ini yang banyak digunakan pada teknik listrik adalah air, minyak transformator, dan minyak kabel.
• Bahan penyekat bentuk gas, yang sering digunakan untuk keperluan teknik listrik diantaranya : udara, nitrogen, hidrogen, dan karbondioksida. 

Ilmu Bahan Listrik - Logam Non Ferro

A. Seng
Pemurnian diperoleh secara elektrolitis dari bahan oksida seng (ZnO). Penemuan mencapai kadar 97,75% Zn. Warnanya abu-abu muda dengan titik cair 419°C dan titik didih 906°C. Daya mekanis tidak kuat.
Seng dipakai sebagai pelindung dari karat, karena lebih tahan terhadap karat daripada besi. Pelapisan dengan seng dilakukan dengan cara galvanis seperti pada tembaga. Seng juga mudah dituang, dan sering dipakai sebagai pencampur bahan lain yang sukar dituang, misalnya tembaga.
Dalam teknik listrik seng banyak dipakai untuk bahan selongsonng elemen kering (kutub negatifnya), batang-batang (elektroda) elemen galvani.
Tahanan jenis 0,12 ohm mm^2/m Dalam perdagangan seng dijual dalam bentuk pelat yang rata atau bergelombang. Juga dalam bentuk kawat dan tuangan dalam bentuk balok.

B. Timah Hitam
Timah hitam terkenal dengan nama timbel. Berat jenis timbel 11,4 dan tahanan jenis 0,94. Logam ini lunak, dapat dicetak dengan cara dicairkan. Titik cair timbel 325°C. Titik didihnya 1560°C, warnanya abu-abu. Timbel tahan terhadap udara, air, air garam, asam belerang.

Dalam teknik listrik, timbel dipakai sebagai pelindung untuk kabel listrik dalam tanah atau pada kabel listrik dasar laut. Karena sifatnya tahan air dan tahan air garam maka kabel yang dibungkus dengan timbel tidak menjadi rusak dipakai di laut. Tetapi kabel menjadi terlalu berat dan mudah terluka/tergores karena sifat lunaknya. Selain itu timbel kurang tahan terhadap getaran. Karena getaran, timbel dapat menjadi rusak dan menyebabkan air masuk ke dalam kabel. Oleh sebab itu pemasangan kabel bersalut timbel hendaknya dijauhkan dari tempat yang banyak getaran , misalnya dekat rel kereta api, jembatan, dan sebagainya. Timbel juga tidak tahan terhadap asam cuka, asam sendawa, dan kapur. Adonan beton yang masih basah juga merusak timbel, maka kabel bersalut timbel yang dipasang pada beton harus diberi perlindungan.

Kecuali sebagai bahan pelindung kabel, kabel juga dipakai untuk pelat-pelat aki, kutub-kutub aki, penghubung sel-sel aki, dan sebagainya. Timbel yang dicampur timah putih dipakai untuk bahan soldir.

Untuk memperoleh kekuatan mekanis yang lebih baik sebagai pembalut kabel, maka timbel dicampur dengan tembaga, antimony, cadmium dan sebagainya.
Timbel mengandung racun, maka setelah bekerja dengan timbel tangan harus dicuci bersih sebelum dipakai untuk memegang makanan.

C. Timah Putih
Timah putih biasa disebut dengan timah. Keadaannya hamper sama dengan timbel. Warnanya putih mengkilat. Titik cairnya lebih rendah dari timbel, yaitu 232°C. Berat jenis 7,3 tahanan jenis 0,15 ohm mm^2/m, keadaan lunak. Timah tidak beracun seperti halnya timbel dan dipakai sebagai pelapis atau bahan campuran.
Sebagai bahan mentah timah diperdagangkan, dituang dalam bentuk balok, sebagai barang setengah jadi, dibuat pelat yang sangat tipis (kurang dari 0,2 mm) dengan nama staniol. Dan yang lebih tipis lagi dengan nama fuli timah. Kadang-kadang timah dicampur dengan timbel. Untuk ini apabila akan digunakan untuk pembungkus makanan, kadar timbel tidak boleh dari 10%.

Dalam teknik listrik, timah banyak dipakai sebagai pelapis tembaga pada hantaran yang bersekat karet dan hantaran tanah. Macam-macam peralatan listrik dilapis dengan timah untuk menahan karet.

Karena sifatnya yang lunak, kalau ditekan oleh ring pada pengerasan mur atau sekrup, timah dapat betul-betul rata sehingga hubungan (kontak) menjadi betul-betul baik, mengurangi tahanan dan meniadakan bunga api (missal pada sepatu kabel, kontak penghubung, rel-rel kotak sekering dan sebagainya.
Pelat-pelat tipis dipakai pada kapasitor. Kegunaan lain dari timah adalah sebagai bahan patri, yaitu dengan mencampurnya dengan timbel.

D. Tembaga
Tembaga adalah bahan tambang yang diketemukan sebagai bijih tembaga yang masih bersenyawa dengan zat asam, asam belerang atau bersenyawa dengan kedua zat tadi. Dalam bijih tembaga juga terkandung batu-batu. Tembaga terdapat di Amerika Utara, Chili, Siberia, Pegunungan Ural, Irian Jaya dan sebagainya.

1. Pembuatan Tembaga
Pembuatan tembaga dilakukan dalam beberapa tahap. Tembaga terikat secara kimia di dalam bijih pada bahan yang disebut batu gang. Untuk mengumpulkan bijih-bijh itu biasanya dulakukan dengan membersihkannya dalam cairan berbuih, di mana di situ ditiupkan udara. Ikatan tembaga dari bijih yang digiling sampai halus dicampur dengan air dan zat-zat kimia sehingga menjadi pulp (bubur) pada suatu bejana silinder. Zat-zat kimia (yang disebut Reagens) berfungsi untuk mempercepat terpisahnya tembaga. Pada bubur tersebut ditiupkan udara atau gas sehingga timbul buih yang banyak. Bagian-bagian logam yang kecil sekali melekat pada gelembung udara atau gas tersebut. Di situ terdapat semacam kincir yang berputar dengan kecepatan sedemikian rupa sehingga gaya sentrifugal melemparkan buih tersebut dengan mineral keluar tepi bejana sehingga terpisah dari batu gang. Setelah proses tersebut logam dihilangkan airnya. Proses selanjutnya adalah pencarian di dalam suatu dapur mantel dengan jalan membakarnya dengan arang debu. Di sini dapat dipisahkan zat asam dan batu-batu silikon dan besinya dioksidasikan menjadi terak yang mengapung pada copper sulifida.

Pengolahan tembaga selanjutnya adalah dengan membawa isi dapur (yang disebut matte) ke konverter mendatar. Di sini belerang akan terbakar oleh arus udara yang kuat. Kemudian tembaga yang disebut blister sekali lagi dicairkan di dalam sebuah dapur anode. Dalam proses ini (yang disebut polen) terjadi proes pengurangan zat asam.
Dari dapur anode cairan segera dituangkan ke dalam cetakan, menjadi pelat-pelat anode. Pelat anode ini setelah didinginkan diangkat ke rumah tangki (bejana beton yang dilapisi timbel antimor pada bagian dalamnya) untuk diolah dengan cara elektrolisis, di mana batang tembaga tersebut dipergunakan sebagai anoda dan lempengan tembaga tipis murni sebagai katode. Selama terjadinya proses elektrolisis, anoda mengurai perlahan-lahan dan tembaga yang kemurniannya tinggi menempel pada katode. Untuk mendapatkan tembaga yang kemurniannya tinggi maka tembaga tersebut harus menjalani proses cair dalam dapur saringan.

2. Sifat – Sifat Tembaga
Produksi tembaga sebagian besar dipergunakan dalam industri kelistrikan, karena tembaga mempunyai daya hantar listrik yang tinggi. Kotoran yang terdapat dalam tembaga akan memperkecil/mengurangi daya hantar listriknya.
Selain mempunyai daya hantar listrik yang tinggi, daya hantar panasnya juga tinggi; dan tahan karat. Oleh karena itu tembaga juga dipakai untuk kelengkapan bahan radiator, ketel, dan alat kelengkapan pemanasan.
Tembaga mempunyai sifat dapat dirol, ditarik, ditekan, ditekan tarik dan dapat ditempa (meleable).

Karena pemakaian meningkat, bahan cadangan untuk mengganti tembaga sudah dipikirkan. Bahan pengganti yang agak mendekati adalah alumunium (Ai). Akan tetapi daya hantar listrik maupun daya hantar panas dari alumunium lebih rendah dibandingkan tembaga.
Titik cair tembaga adalah 1083° Celcius, titik didihnya 2593° Celcius, massa jenis 8,9, kekuatan tarik 160 N/mm^2.
Kegunaan lain dari tembaga ialah sebagai bahan untuk baut penyolder, untuk kawat-kawat jalan traksi listrikl (kereta listrik, trem, dan sebagainya), unsur hantaran listrik di atas tanah, hantaran penangkal petir, untuk lapis tipis dari kolektor, dan lain-lain.

E. Alumunium
Logam ini sangat diperlukan dalam pembuatan kapal terbang, mobil, motor, dan dalam teknik listrik. Alumunium diperoleh dari boksit yang didapat di Suriname, di Amerika utara dan negara-negara lain. Selain boksit, alumunium juga diperoleh dari kriolit yang berasal dari Greenland dan Batu Labrado, yang ditemukan di Norwegia.

1. Pembuatan Alumunium
Biasanya tanah alumunium bersama soda dicairkan di bawah tekanan pada suhu 160° Celcius, di mana terjadi suatu persenyawaan alumunium, dan kemudian sodanya ditarik sehingga berubah menjadi oksida alumunium yang masih mempunyai titik cair tinggi (2200° Celcius). Titik cair turun menjadi sebesar 100° Celcius kalau dicampur kriolit. Proses cair itu terjadi dalam sebuah dapur listrik yang terdiri atas sebuah bak baja plat, di bagian dalam dilapisi dengan arang murni, dan diatasnya terdapat batang-batang arang yang dicelupkan ke dalam campuran tersebut. Arus listrik yang mengalir akan mengangkat kriolit menjadi cair oleh panas yang terjadi karena arus listrik yang mengangkat dalam cairan kriolit tersebut adalah sebagai bahan pelarut untuk oksidasi alumunium. Alumunium (titik cair 650° C) dipisahkan oleh arus listrik itu ke dasar dan diambil. Proses cair itu sebenarnya lama sekali dan perlu arus listrik yang besar (10.000-30.000A). Oleh karena itu pembuatan alumunium hanya dilakukan di negara-negara yang listriknya murah.

F. Logam Mulia

1. Perak
Perak, emas dan platina termasuk logam mulia. Perak terdapat dalam campuran logam-logam lain, misalnya timbel, timah atau seng. Setelah melalui proses pemurnian dapat diperoleh perak murni. Logam ini lunak, ulet dan mengkilat, dapat dicetak dan ditarik. Titik cairnya di bawah titik cair tembaga, yaitu 960°C, berat jenis 10,5 dan tahanan jenis perak 0,016° Ohm mm2 /m. Berarti daya hantar listriknya lebih dari tembaga. Perak merupakan logam yang mempunyai daya hantar terbaik.

Perak termasuk bahan yang sukar beroksidasi, dan warnanya putih. Karena harganya agak mahal maka pemakaiannya dalam teknik listrik untuk hal-hal yang khusus dan penting saja. Misalnya, untuk kumparan pengukur. Pesawat ini membutuhkan ketelitian dan ruangan sempit sehingga membutuhkan penghantar dengan daya hantar yang terbaik dan tidak berkarat.

Jadi perak dibuiat kawat dengan ukuran yang sangat lembut, yang disebut benang perak. Karena titik cairnya di bawah tembaga,maka perak dipergunakan juga sebagai pengamanlebur. Untuk titik-titik kontak banayak digunakan perak. Pemasangannya mudah karena perak mudah cair dan mudah dipatrikan pada logam lain, misalnya besi, tembagadan sebagainya. Perak juga tidak berkarat.

2. Emas
Emas terdapat dalam persenyawaan dengan logam-logam lain. Pemurniannya dikerjakan secara kimia. Emas murni sangat lunak. Kekerasannya dapat dipertinggi dengan mencampurkan perak. Banyaknya perak dalam campuran initi menentukan besarnya karat. Emas murni dinyatakan sebagai 24 karat. Emas 22 karat berarti dalam 24 bagian ada 22 bagian emas, sisanya perak 2 bagian. Warnanya kuning mengkilat. Berat jenis 19,3. Titik cair 1063°C.Dalam perdagangan emas berbentuk balok tuangan dan lembaran seperti kertas, sangat tipis. Karena mahalnya, umumnya emas jarang dipakai dalam teknik listrik.

3. Platina
Platina merupakan bahan yang tidak berkarat, dapat ditempa, regang, tetapi sukar dicairkan dan tahan dari sebagian besar bahan-bahan kimia; merupakan logam terberat dengan berat jenis 21,5. Titik cairnya mencapai 1774°C, sedang tahanan jenisnya 0,42 ohm.mm^2/m. Warnanya putih keabu-abuan. Pemurnian platina dilakukan secara kimia. Platina dapat ditarik menjadi kawat halus dan filamen yang tipis.

Platina dipakai dalam laboratorium, untuk unsur pemanas tungku-tungku listrik bila membutuhkan panas yang tinggi, dapat mencapai diatas 1300° C. Pemakaian platina dalam teknik listrik antara lain untuk peralatan laboratorium yang tahan karat, kisi tabung radio yang khusus dan sebagainya. Hampir kesemuanya itu untuk kepentingan dalam laboratorium yang sangat membutuhkan kecermatan kerja pesawat. Untuk dipakai secara umum platina terlalu mahal dan bahan lain sebagai penggantinya cukup banyak.

Ilmu Bahan Listrik - Dasar

Suatu bahan dapat berbentuk padat, cair, atau gas. Wujud bahan tertentu juga bisa berubah karena pengaruh suhu. Selain pengelompokkan berdasarkan wujud tersebut dalam teknik listrik bahan-bahan juga dapat dikelompokkan sebagai berikut.
1. Bahan Penghantar (konduktor)
2. Bahan Penyekat (isolator/insulator)
3. Bahan Setengah Penghantar (semi konduktor)
4. Bahan Magnetis.
5. Bahan Super Konduktor.
6. Bahan Nuklir.
7. Bahan Khusus (bahan untuk pembuatan kontak-kontak, untuk sekering, dan sebagainya)

1. Bahan Penghantar (konduktor) adalah bahan yang menghantarkan listrik dengan mudah. Bahan ini mempunyai daya hantar listrik (Electrical Conductivity) yang besar dan tahanan listrik (Electrical Resistance) kecil. Bahan penghantar listrik berfungsi untuk mengalirkan arus listrik. Perhatikan fungsi kabel, kumparan/lilitan pada alat listrik yang anda jumpai. Juga pada saluran transmisi/distribusi. Dalam teknik listrik, bahan penghantar yang sering dijumpai adalah tembaga dan alumunium.

2. Bahan Penyekat (Insulator/isolator) adalah bahan yang befungsi untuk menyekat (misalnya antara 2 penghantar); agar tidak terjadi aliran listrik/kebocoran arus apabila kedua penghantar tersebut bertegangan. Jadi bahan penyekat harus mempunyai tahanan jenis besar dan tegangan tembus yang tinggi. Bahan penyekat yang sering ditemui dalam teknik listrik adalah : plastik, karet, dan sebagainya.

3. Bahan Setengah Penghantar (Semi Konduktor) adalah bahan yang mempunyai daya hantar lebih kecil dibanding bahan konduktor, tetapi lebih besar dibanding bahan isolator. Dalam teknik elektronika banyak dipakai semi konduktor dari bahan germanium (Ge) dan silicon (Si). Dalam keadaan aslinya, Ge dan Si adalah bahan pelikan dan merupakan isolator. Di Pabrik bahan-bahan tersebut diberi kotoran. Jika bahan tersebut dikotori dengan alumunium maka diperoleh bahan semikonduktor type P (bahan yang kekurangan elektron/mempunyai sifat positif). Jika dikotori dengan fosfor maka yang dipeoleh adalah semikonduktor jenis N (bahan yang kelebihan electron, sehingga bersifat negative). Ge mempunyai daya hantar lebih tinggi dibandingkan Si, sedangkan Si lebih tahan panas dibanding Ge.

4. Bahan Magnetik (Magnetic Materials) dikelompokkan menjadi 3 kelompok, yaitu ferro magnetic, para-magnetic dan dia-magnetic. Bahan ferro-magnetic adalah bahan yang mempunyai permeabilitas tinggi dan mudah sekali dialiri garis-garis gaya magnet. Contoh bahan yang mempunyai permeabilitas tinggi adalah besi, besi pasir, stalloy, dan sebagainya. Selain itu sering dijumpai magnet yang merupakan magnet permanen, misalnya alnico, cobalt, baja arang, dan sebagainya. Baja untuk magnet sering dijumpai pada pelat-pelat motor/generator, pelat-pelat transformator, dan sebagainya. Dalam bidang elektronika, digunakan bahan magnet misalnya pada speaker, alat-alat ukur elektronika, dan sebagainya.

5. Bahan Super Konduktor. Pada tahun 1911, Kamerligh Onnes mengukur perubahan tahanan listrik yang disebabkan oleh perubahan suhu Hg dalam helium cair. Dia menemukan bahwa tahanan listrik tiba-tiba hilang pada suhu 4,153°K. Sampai saat ini telah ditemukan sekitar 24 unsur hantaran super dan lebih banyak lagi paduan dan senyawa yang menunjukkan sifat-sifat hantaran super. Temperatur kritisnya berkisar antara 1 samapai 19° Kelvin. Bahan-bahan lead (timah), tin (timah patri), alumunium, dan mercury, pada sushu mendekati 0°K mempunyai resistivitas nol.

6. Bahan Nuklir. Bahan nuklir sering dipakai sebagai bahan baker reaktor nuklir. Reaktor nuklir adalah pesawat yang mengandung bahan-bahan nuklir yang dapat membelah, yang disusun sedemikian sehingga suatu reaksi berantai dapat berjalan dalam keadaan dan kondisi terkendali. Dengan sendirinya syarat agar suatu bahan dapat dipergunakan sebagai bahan bakar nuklir adalah bahan yang dapat mengadakan fisi (pembelahan atom). Dalam reaktor nuklir digunakan bahan bakar uranium 235, plutonium-239, uranium-233.

Dalam pemilihan jenis bahan listrik, selain sifat listrik, perlu dipertimbangkan beberapa sifat lain dari bahan, yaitu :

A. Sifat Mekanis, yaitu perubahan bentuk dari suatu benda padat akibat adanya gaya-gaya dari luar yang bekerja pada benda tersebut. Jadi adanya perubahan itu tergantung kepada besar kecilnya gaya, bentuk benda, dan dari bahan apa benda tersebut dibuat.
Jika tidak ada gaya dari luar yang bekerja, maka ada tiga kemungkinan yang akan terjadi pada suatu benda :
• Bentuk benda akan kembali ke bentuk semula, hal ini karena benda mempunyai sifat kenyal (elastis)
• Bentuk benda sebagian saja akan kembali ke bentuk semula, hal ini hanya sebagian saja yang dapat kembali ke bentuk semula karena besar gaya yang bekerja melampaui batas kekenyalan sehingga sifat kekenyalan menjadi berkurang.
• Bentuk benda berubah sama sekali, hal ini dapat terjadi karena besar gaya yang bekerja jauh melampaui batas kekenyalan sehingga sifat kekenyalan sama sekali hilang.

B. Sifat Fisis, Benda padat mempunyai bentuk yang tetap (bentuk sendiri), dimana pada suhu yang tetap benda padat mempunyai isi yang tetap pula. Isi akan bertambah atau memuai jika mengalami kenaikkan suhu dan sebaliknya benda akan menyusut jika suhunya menurun. Karena berat benda tetap , maka kepadatan benda akan bertambah, sehingga dapat disimpulkan sebagai berikut :
• Jika isi (volume) bertambah (memuai), maka kepadatannya akan berkurang
• Jika isinya berkurang (menyusut), maka kepadatan akan bertambah
• Jadi benda lebih padat dalam keadaan dingin daripada dalam keadaan panas

C. Sifat Kimia, berkarat adalah termasuk sifat kimia dari suatu bahan yang terbuat dari logam. Hal ini terjadi karena reaksi kimia dari bahan itu sendiri dengan sekitarnya atau bahan itu sendiri dengan bahan cairan. Biasanya reaksi kimia dengan bahan cairan itulah yang disebut berkarat atau korosi. Sedangkan reaksi kimia dengan sekitarnya disebut pemburaman.

Pengujian sifat mekanis bahan perlu dilakukan untuk mendapatkan informasi spesifikasi bahan. Melalui pengujian tarik akan diperoleh besaran-besaran kekuatan tarik, kekuatan mulur, perpanjangan, reduksi penampang, modulus elastis, resilien, keuletan logam, dan lain-lain. Selain sifat-sifat tersebut dengan tidak secara terlalu teknis, perlu diperhatikan kekerasan (hardness) dan kemampuan menahan goresan (abrasion). Contoh sifat fisis yang sering diperlukan adalah berat jenis, titik lebur, titik didih, titik beku, kalor lebur, dan sebagainya. Juga sifat perubahan volume, wujud, dan panjang terhadap perubahan suhu. Perkaratan adalah contoh sifat bahan akibat reaksi kimia; reaksi antara logam dengan oksigen yang ada di udara. Sifat kimia juga termasuk sifat bahan yang beracun, kemungkinan mengadakan reaksi dengan garam, asam, dan basa.
intisari

Selain bahan penyekat atau isolator di atas, ada bahan lain yang juga banyak digunakan dalam teknik ketenagalistrikan yaitu bahan penghantar atau sering dinamakan dengan istilah konduktor. Suatu bahan listrik yang akan dijadikan penghantar, juga harus mempunyai si fat-sifat dasar penghantar itu sendiri seperti: koefisien suhu tahanan, daya hantar panas, kekuatan tegangan tarik dan lain-lain.
Disamping itu juga penghantar kebanyakan menggunakan bentuk padat seperti tembaga, aluminium, baja, seng, timah, dan lain-lain. Untuk keperluan komunikasi sekarang banyak digunakan bahan penghantar untuk media transmisi telekomunikasi yaitu menggunakan serat optik.

Erat kaitannya dengan keperluan pembangkitan energi listrik, yaitu suatu bahan magnetik yang akan dijadikan sebagai medium untuk konversi energi, baik dari energi listrik ke energi mekanik, energi mekanik ke energi listrik, energi listrik menjadi energi panas atau cahaya, maupun dari energi listrik menjadi energi listrik kembali. Bahan magnetik ini tentunya harus memenuhi sifat-sifat kemagnetan, dan parameter-parameter untuk dijadikan sebagai bahan magnet yang baik. Dalam pemilihan bahan magnetik ini dapat dikelompokkan menjadi tiga macam, yaitu ferromagnetik, paramagnetik, dan diamagnetik.

Suatu bahan yang sekarang lagi ngetren dan paling banyak sedang dilakukan riset-riset di dunia ilmu pengetahuan dan teknologi yaitu bahan semi konduktor. Berkembangnya dunia elektronika dan komputer saat ini adalah merupakan salah satu peranan dari teknologi semi konduktor. Bahan ini sangat besar peranannya pada saat ini pada berbagai bidang disipilin ilmu terutama di bidang teknik elektro seperti teknologi informasi, komputer, elektronika, telekomunikasi, dan lain -lain. Berkaitan dengan bahan semi konduktor, pada saat ini dapat dikelompokkan menjadi dua macam yaitu semi konduktor dan super konduktor.

Konduktor

1.1 Jenis Bahan Konduktor
Bahan-bahan yang dipakai untuk konduktor harus memenuhi persyaratan-persyaratan sebagai berikut:
1. Konduktifitasnya cukup baik.
2. Kekuatan mekanisnya (kekuatan tarik) cukup tinggi.
3. Koefisien muai panjangnya kecil.
4. Modulus kenyalnya (modulus elastisitas) cukup besar.
Bahan-bahan yang biasa digunakan sebagai konduktor, antara lain:
1. Logam biasa, seperti: tembaga, aluminium, besi, dan sebagainya.
2. Logam campuran (alloy), yaitu sebuah logam dari tembaga atau aluminium yang diberi campuran dalam jumlah tertentu dari logam jenis lain, yang gunanya untuk menaikkan kekuatan mekanisnya.
3. Logam paduan (composite), yaitu dua jenis logam atau lebih yang dipadukan dengan cara kompresi, peleburan (smelting) atau pengelasan (welding).

1.2 Klasifikasi Konduktor
1.2.1 Klasifikasi konduktor menurut bahannya:
1. kawat logam biasa, contoh:
a. BBC (Bare Copper Conductor).
b. AAC (All Aluminum Alloy Conductor).
2. kawat logam campuran (Alloy), contoh:
a. AAAC (All Aluminum Alloy Conductor)
b. kawat logam paduan (composite), seperti: kawat baja berlapis tembaga (Copper Clad Steel) dan kawat baja berlapis aluminium (Aluminum Clad Steel).
3. kawat lilit campuran, yaitu kawat yang lilitannya terdiri dari dua jenis logam atau lebih,
contoh: ASCR (Aluminum Cable Steel Reinforced).

1.2.2 Klasifikasi konduktor menurut konstruksinya:
1. kawat padat (solid wire) berpenampang bulat.
2. kawat berlilit (standart wire) terdiri 7 sampai dengan 61 kawat padat yang dililit menjadi satu, biasanya berlapis dan konsentris.
3. kawat berongga (hollow conductor) adalah kawat berongga yang dibuat untuk mendapatkan garis tengah luar yang besar.

1.2.3. Klasifikasi konduktor menurut bentuk fisiknya:
1. konduktor telanjang.
2. konduktor berisolasi, yang merupakan konduktor telanjang dan pada bagian luarnya diisolasi sesuai dengan peruntukan tegangan kerja, contoh:
a. Kabel twisted.
b. Kabel NYY
c. Kabel NYCY
d. Kabel NYFGBY

1.3 Karakteristik Konduktor
Ada 2 (dua) jenis karakteristik konduktor, yaitu:
1. karakteristik mekanik, yang menunjukkan keadaan fisik dari konduktor yang menyatakan kekuatan tarik dari pada konduktor (dari SPLN 41-8:1981, untuk konduktor 70 mm berselubung AAAC-S pada suhu sekitar 30 C, maka kemampuan maksimal dari konduktor untuk menghantar arus adalah 275 A).
2. karakteristik listrik, yang menunjukkan kemampuan dari konduktor terhadap arus listrik yang melewatinya (dari SPLN 41-10 : 1991, untuk konduktor 70 mm2 berselubung AAAC-S pada suhu sekitar 30o C, maka kemampuan maksimum dari konduktor untuk menghantar arus adalah 275 A).

1.3.1 Konduktivitas listrik
Sifat daya hantar listrik material dinyatakan dengan konduktivitas, yaitu kebalikan dari resistivitas atau tahanan jenis penghantar, dimana tahanan jenis penghantar tersebut didefinisikan sebagai:
R . A
ρ = ----------
l
dimana;
A : luas penampang (m2)
l : Panjang penghantar (m)
Ώ : tahanan jenis penghantar (ohm.m)
R : tahanan penghantar (ohm)
ρ : konduktivitas

1
a = ------
ρ

Menyatakan kemudahan – kemudahan suatu material untuk meneruskan arus listrik. Satuan konduktivitas adalah (ohm meter). Konduktivitas merupakan sifat listrik yang diperlukan dalam berbagai pemakaian sebagai penghantar tenaga listrik dan mempunyai rentang harga yang sangat luas. Logam atau material yang merupakan penghantar listrik yang baik, memiliki konduktivitas listrik dengan orde 107 (ohm.meter) -1 dan sebaliknya material isolator memiliki konduktivitas yang sangat rendah, yaitu antara 10-10 sampai dengan 10-20 (ohm.m)-1. Diantara kedua sifat ekstrim tersebut, ada material semi konduktor yang konduktivitasnya berkisar antara 10-6 sampai dengan 10-4 (ohm.m)-1. Berbeda pada kabel tegangan rendah, pada kabel tegangan menengah untuk pemenuhan fungsi penghantar dan pengaman terhadap penggunaan, ketiga jenis atau sifat konduktivitas tersebut diatas digunakan semuanya.

------------------------------------------------------------------------------------------
Logam Konduktivitas listrik ohm meter
Perak ( Ag ) ………………………. 6,8 x 107
Tembaga ( Cu ) ………………….. 6,0 x 107
Emas ( Au ) …………………….. .. 4,3 x 107
Alumunium ( Ac ) ………………. .. 3,8 x 107
Kuningan ( 70% Cu – 30% Zn )… 1,6 x 107
Besi ( Fe ) ………………………… 1,0 x 107
Baja karbon ( Ffe – C ) …………. 0,6 x 107
Baja tahan karat ( Ffe – Cr ) …… 0,2 x 107

Tabel 1. Konduktivitas Listrik Berbagai Logam dan Paduannya Pada Suhu Kamar.

1.3.2 Kriteria mutu penghantar

Konduktivitas logam penghantar sangat dipengaruhi oleh unsur – unsur pemadu, impurity atau ketidaksempurnaan dalam kristal logam, yang ketiganya banyak berperan dalam proses pembuatan pembuatan penghantar itu sendiri. Unsur – unsur pemandu selain mempengaruhi konduktivitas listrik, akan mempengaruhi sifat – sifat mekanika dan fisika lainnya. Logam murni memiliki konduktivitas listrik yang lebih baik dari pada yang lebih rendah kemurniannya. Akan tetapi kekuatan mekanis logam murni adalah rendah.
Penghantar tenaga listrik, selain mensyaratkan konduktivitas yang tinggi juga membutuhkan sifat mekanis dan fisika tertentu yang disesuaikan dengan penggunaan penghantar itu sendiri.

Selain masalah teknis, penggunaan logam sebagai penghantar ternyata juga sangat ditentukan oleh nilai ekonomis logam tersebut dimasyarakat. Sehingga suatu kompromi antara nilai teknis dan ekonomi logam yang akan digunakan mutlak diperhatikan. Nilai kompromi termurahlah yang akan menentukan logam mana yang akan digunakan. Pada saat ini, logam Tembaga dan Aluminium adalah logam yang terpilih diantara jenis logam penghantar lainnya yang memenuhi nilai kompromi teknis ekonomis termurah.

Dari jenis–jenis logam penghantar pada tabel 1. diatas, tembaga merupakan penghantar yang paling lama digunakan dalam bidang kelistrikan. Pada tahun 1913, oleh International Electrochemical Comission (IEC) ditetapkan suatu standar yang menunjukkan daya hantar kawat tembaga yang kemudian dikenal sebagai International Annealed Copper Standard (IACS). Standar tersebut menyebutkan bahwa untuk kawat tembaga yang telah dilunakkan dengan proses anil (annealing), mempunyai panjang 1m dan luas penampang 1mm2, serta mempunyai tahanan listrik (resistance) tidak lebih dari 0.017241 ohm pada suhu 20oC, dinyatakan mempunyai konduktivitas listrik 100% IACS.

Akan tetapi dengan kemajuan teknologi proses pembuatan tembaga yang dicapai dewasa ini, dimana tingkat kemurnian tembaga pada kawat penghantar jauh lebih tinggi jika dibandingkan pada tahun 1913, maka konduktivitas listrik kawat tembaga sekarang ini bisa mencapai diatas 100% IACS.
Untuk kawat Aluminium, konduktivitas listriknya biasa dibandingkan terhadap standar kawat tembaga. Menurut standar ASTM B 609 untuk kawat aluminium dari jenis EC grade atau seri AA 1350(*), konduktivitas listriknya berkisar antara 61.0 – 61.8% IACS, tergantung pada kondisi kekerasan atau temper. Sedangkan untuk kawat penghantar dari paduan aluminium seri AA 6201, menurut standar ASTM B 3988 persaratan konduktivitas listriknya tidak boleh kurang dari 52.5% IACS. Kawat penghantar 6201 ini biasanya digunakan untuk bahan kabel dari jenis All Aluminium Alloy Conductor (AAAC).

Disamping persyaratan sifat listrik seperti konduktivitas listrik diatas, kriteria mutu lainnya yang juga harus dipenuhi meliputi seluruh atau sebagian dari sifat – sifat atau kondisi berikut ini, yaitu:
a. komposisi kimia.
b. sifat tarik seperti kekuatan tarik (tensile strength) dan regangan tarik (elongation).
c. sifat bending.
d. diameter dan variasi yang diijinkan.
e. kondisi permukaan kawat harus bebas dari cacat, dan lain-lain.




SCADA

SCADA merupakan singkatan dari Supervisory Control and Data Acquisition. SCADA merupakan sebuah sistem yang mengumpulkan informasi atau data-data dari lapangan dan kemudian mengirimkan-nya ke sebuah komputer pusat yang akan mengatur dan mengontrol data-data tersbut. Sistem SCADA tidak hanya digunakan dalam proses-proses industri, misalnya, pabrik baja, pembangkit dan pendistribusian tenaga listrik (konvensional maupun nuklir), pabrik kimia, tetapi juga pada beberapa fasilitas eksperimen seperti fusi nuklir. Dari sudut pandang SCADA, ukuran pabrik atau sistem proses mulai dar 1.000an hingga 10.000an I/O (luara/masukan), namun saat ini sistem SCADA sudah bisa menangani hingga ratusan ribu I/O.

Ada banyak bagian dalam sebuah sistem SCADA. Sebuah sistem SCADA biasanya memiliki perangkat keras sinyal untuk memperoleh dan mengirimkan I/O, kontroler, jaringan, antarmuka pengguna dalam bentuk HMI (Human Machine Interface), piranti komunikasi dan beberapa perangkat lunak pendukung. Semua itu menjadi satu sistem, istilah SCADA merujuk pada sistem pusat keseluruhan. Sistem pusat ini biasanya melakukan pemantauan data-data dari berbagai macam sensor di lapangan atau bahkan dari tempat2 yang lebih jauh lagi (remote locations).

Sistem pemantauan dan kontrol industri biasanya terdiri dari sebuah host pusat atau master (biasa dinamakan sebagai master station, master terminal unit atau MTU), satu atau lebih unit-unit pengumpul dan kontrol data lapangan (biasa dinamakan remote stattion, remoter terminal unit atau RTU) dan sekumpulan perangkat lunak standar maupun customized yang digunakan untuk memantau dan mengontrol elemen-elemen data-data di lapangan. Sebagian besar sistem SCADA banyak memiliki karakteristik kontrol kalang-terbuka (open-loop) dan banyak menggunakan komunikasi jarak jauh, walaupun demikian ada beberapa elemen merupakan kontrol kalang-tertutup (closed-loop) dan/atau menggunakan komunikasi jarak dekat.

Sistem yang mirip dengan sistem SCADA juga bisa kita jumpai di beberapa pabrik proses, perawatan dan lain-lain. Sistem ini dinamakan DCS (Distributed Control Systems). DCS memiliki fungsi yang mirip dengan SCADA, tetapi unit pengumpul dan pengontrol data biasanya ditempatkan pada beberapa area terbatas. Komunikasinya bisa menggunakan jaringan lokal (LAN), handal dan berkecepatan tinggi.

SCADA Pada Sistem Tenaga Listrik

Fasilitas SCADA diperlukan untuk melaksanakan pengusahaan tenaga listrik terutama pengendalian operasi secara realtime. Suatu sistem SCADA terdiri dari sejumlah RTU (Remote Terminal Unit), sebuah Master Station / RCC (Region Control Center), dan jaringan telekomunikasi data antara RTU dan Master Station. RTU dipasang di setiap Gardu Induk atau Pusat Pembangkit yang hendak dipantau. RTU ini bertugas untuk mengetahui setiap kondisi peralatan tegangan tinggi melalui pengumpulan besaran-besaran listrik, status peralatan, dan sinyal alarm yang kemudian diteruskan ke RCC melalui jaringan telekomunikasi data. RTU juga dapat menerima dan melaksanakan perintah untuk merubah status peralatan tegangan tinggi melalui sinyal-sinyal perintah yang dikirim dari RCC.

Dengan sistem SCADA maka Dispatcher dapat mendapatkan data dengan cepat setiap saat (real time) bila diperlukan, disamping itu SCADA dapat dengan cepat memberikan peringatan pada Dispatcher bila terjadi gangguan pada sistem, sehingga gangguan dapat dengan mudah dan cepat diatasi / dinormalkan. Data yang dapat diamati berupa kondisi ON / OFF peralatan transmisi daya, kondisi sistem SCADA sendiri, dan juga kondisi tegangan dan arus pada setiap bagian di komponen transmisi. Setiap kondisi memiliki indikator berbeda, bahkan apabila terdapat indikasi yang tidak valid maka operator akan dapat megetahui dengan mudah.

Fungsi kendali pengawasan mengacu pada operasi peralatan dari jarak jauh, seperti switching circuit breaker, pengiriman sinyal balik untuk menunjukkan atau mengindikasikan kalau operasi yang diinginkan telah berjalan efektif. Sebagai contoh pengawasan dilakukan dengan menggunakan indikasi lampu, jika lampu hijau menyala menunjukkan peralatan yang terbuka (open), sedang lampu merah menunjukkan bahwa peralatan tertutup (close), atau dapat menampilkan kondisi tidak valid yaitu kondisi yang tidak diketahui apakah open atau close. Saat RTU melakukan operasi kendali seperti membuka circuit breaker, perubahan dari lampu merah menjadi hijau pada pusat kendali menunjukkan bahwa operasi berjalan dengan sukses.

Operasi pengawasan disini memakai metode pemindaian (scanning) secara berurutan dari RTU-RTU yang terdapat pada Gardu Induk-Gardu Induk. Sistem ini mampu mengontrol beberapa RTU dengan banyak peralatan pada tiap RTU hanya dengan satu Master Station. Lebih lanjut, sistem ini juga mampu mengirim dari jarak jauh data-data hasil pengukuran oleh RTU ke Master Station, seperti data analog frekuensi, tegangan, daya dan besaran-besaran lain yang dibutuhkan untuk keseluruhan / kekomplitan operasi pengawasan .

Keuntungan sistem SCADA lainnya ialah kemampuan dalam membatasi jumlah data yang ditransfer antar Master Station dan RTU. Hal ini dilakukan melalui prosedur yang dikenal sebagai exception reporting dimana hanya data tertentu yang dikirim pada saat data tersebut mengalami perubahan yang melebihi batas setting, misalnya nilai frekuensi hanya dapat dianggap berubah apabila terjadi perubahan sebesar 0,05 Herzt. Jadi apabila terjadi perubahan yang nilainya sangat kecil maka akan dianggap tidak terjadi perubahan frekuensi. Hal ini adalah untuk mengantisipasi sifat histerisis sistem sehingga nilai frekuensi yang sebenarnya dapat dibaca dengan jelas.

Master Station secara berurutan memindai (scanning) RTU-RTU dengan mengirimkan pesan pendek pada tiap RTU untuk mengetahui jika RTU mempunyai informasi yang perlu dilaporkan. Jika RTU mempunyai sesuatu yang perlu dilaporkan, RTU akan mengirim pesan balik pada Master Station, dan data akan diterima dan dimasukkan ke dalam memori komputer. Jika diperlukan, pesan akan dicetak pada mesin printer di Master Station dan ditampilkan pada layar monitor.

Siklus pindai membutuhkan waktu relatif pendek, sekitar 7 detik (maksimal 10 detik). Siklus pindai yaitu pemindaian seluruh remote terminal dalam sistem. Ketika Master Station memberikan perintah kepada sebuah RTU, maka semua RTU akan menerima perintah itu, akan tetapi hanya RTU yang alamatnya sesuai dengan perintah itulah yang akan menjalankannya. Sistem ini dinamakan dengan sistem polling. Pada pelaksanaannya terdapat waktu tunda untuk mencegah kesalahan yang berkaitan dengan umur data analog.

Selain dengan sistem pemindaian, pertukaran data juga dapat terjadi secara incidental ( segera setelah aksi manuver terjadi ) misalnya terjadi penutupan switch circuit breaker oleh operator gardu induk, maka RTU secara otomatis akan segera mengirimkan status CB di gardu induk tersebut ke Master Station. Dispatcher akan segera mengetahui bahwa CB telah tertutup.

Ketika operasi dilakukan dari Master Station, pertama yang dilakukan adalah memastikan peralatan yang dipilih adalah tepat, kemudian diikuti dengan pemilihan operasi yang akan dilakukan. Operator pada Master Station melakukan tindakan tersebut berdasar pada prosedur yang disebut metode “select before execute (SBXC)“, seperti di bawah ini:

1.) Dispatcher di Master Station memilih RTU.

2.) Dispatcher memilih peralatan yang akan dioperasikan.

3.) Dispatcher mengirim perintah.

4.) Remote Terminal Unit mengetahui peralatan yang hendak dioperasikan.

5.) Remote Terminal Unit melakukan operasi dan mengirim sinyal balik pada Master Station ditunjukkan dengan perubahan warna pada layar VDU dan cetakan pesan pada printer logging.

Prosedur di atas meminimalkan kemungkinan terjadinya kesalahan operasi.

Jika terjadi gangguan pada RTU, pesan akan dikirim dari RTU yang mengalami gangguan tadi ke Master Station, dan pemindaian yang normal akan mengalami penundaan yang cukup lama karena Master Station mendahulukan pesan gangguan dan menyalakan alarm agar operator dapat mengambil tindakan yang diperlukan secepatnya. Pada saat yang lain, pada kebanyakan kasus, status semua peralatan pada RTU dapat dimonitor setiap 2 detik, memberikan informasi kondisi sistem yang sedang terjadi pada operator di Pusat Kendali (RCC).

Hampir semua sistem kendali pengawasan modern berbasis pada komputer, yang memungkinkan Master Station terdiri dari komputer digital dengan peralatan masukan keluaran yang dibutuhkan untuk mengirimkan pesan-pesan kendali ke RTU serta menerima informasi balik. Informasi yang diterima akan ditampilkan pada layar VDU dan/atau dicetak pada printer sebagai permanent records. VDU juga dapat menampilkan informasi grafis seperti diagram satu garis. Pada RCC (pusat kendali), seluruh status sistem juga ditampilkan pada Diagram Dinding (mimic board), yang memuat data mengenai aliran daya pada kondisi saat itu dari RTU.

Apa itu Scada?

Apa manfaat SCADA bagi Anda? SCADA bukanlah teknologi khusus, tapi lebih merupakan sebuah aplikasi. Kepanjangan SCADA adalah Supervisory Control And Data Acquisition, semua aplikasi yang mendapatkan data-data suatu sistem di lapangan dengan tujuan untuk pengontrolan sistem merupakan sebuah Aplikasi SCADA! Seperti telah dibahas pada artikel lainnya di sini.

Ada dua elemen dalam Aplikasi SCADA, yaitu:
1. Proses, sistem, mesin yang akan dipantau dan dikontrol - bisa berupa power plant, sistem pengairan, jaringan komputer, sistem lampu trafik lalu-lintas atau apa saja;
2. Sebuah jaringan peralatan ‘cerdas’ dengan antarmuka ke sistem melalui sensor dan luaran kontrol. Dengan jaringan ini, yang merupakan sistem SCADA, membolehkan Anda melakukan pemantauan dan pengontrolan komponen-
komponen sistem tersebut.

Anda dapat membangun sistem SCADA menggunakan berbagai macam teknologi maupun protokol yang berbeda-beda.

DIMANAKAH SCADA DIGUNAKAN?

Anda dapat menggunakan SCADA untuk mengatur berbagai macam peralatan. Biasanya, SCADA digunakan untuk melakukan proses industri yang kompleks secara otomatis, menggantikan tenaga manusia (bisa karena dianggap berbahaya atau tidak praktis - konsekuensi logis adalah PHK), dan biasanya merupakan proses-proses yang melibatkan faktor-faktor kontrol yang lebih banyak, faktor-faktor kontrol gerakan-cepat yang lebih banyak, dan lain sebagainya, dimana pengontrolan oleh manusia menjadi tidak nyaman lagi.
Sebagai contoh, SCADA digunakan di seluruh dunia misalnya untuk…
• Penghasil, transmisi dan distribusi listrik: SCADA digunakan untuk mendeteksi besarnya arus dan tegangan, pemantauan operasional circuit breaker, dan untuk mematikan/menghidupkan the power grid;
• Penampungan dan distribusi air: SCADA digunakan untuk pemantauan dan pengaturan laju aliran air, tinggi reservoir, tekanan pipa dan berbagai macam faktor lainnya;
• Bangunan, fasilitas dan lingkungan: Manajer fasilitas menggunakan SCADA untuk mengontrol HVAC, unit-unit pendingin, penerangan, dan sistem keamanan.
• Produksi: Sistem SCADA mengatur inventori komponen-komponen, mengatur otomasi alat atau robot, memantau proses dan kontrol kualitas.
• Transportasi KA listrik: menggunakan SCADA bisa dilakukan pemantauan dan pengontrolan distribusi listrik, otomasi sinyal trafik KA, melacak dan menemukan lokasi KA, mengontrol palang KA dan lain sebagainya.
• Lampu lalu-lintas: SCADA memantau lampu lalu-lintas, mengontrol laju trafik, dan mendeteksi sinyals-sinyal yang salah.

Dan, tentunya, masih banyak lagi aplikasi-aplikasi potensial untuk sistem SCADA. SCADA saat ini digunakan hampir di seluruh proyek-proyek industri dan infrastruktur umum.

Intinya SCADA dapat digunakan dalam aplikasi-aplikasi yang membutuhkan kemudahan dalam pemantauan sekaligus juga pengontrolan, dengan berbagai macam media antarmuka dan komunikasi yang tersedia saat ini (misalnya, Komputer, PDA, Touch Screen, TCP/IP, wireless dan lain sebagainya).

NGAPAIN JUGA PAKE SCADA?

Coba sekarang pikirkan tanggung-jawab atau tugas Anda di perusahaan, berkaitan dengan segala macam operasi dan parameter-parameter yang akhirnya mempengaruhi hasil produksi:
• Apakah peralatan Anda membutuhkan Catu Daya, suhu yang terkontrol, kelembaban lingkungan yang stabil dan tidak pernah mati?
• Apakah Anda perlu tahu - secara real time - status dari berbagai macam komponen dan peralatan dalam sebuah sistem kompleks yang besar?
• Apakah Anda perlu tahu bagaimana perubahan masukan mempengaruhi luaran?
• Peralatan apa saja yang perlu Anda kontrol - secara real time - dari jarak jauh?
• Apakah Anda perlu tahu dimanakah terjadinya kesalahan/kerusakan dalam sistem sehingga mempengaruhi proses?

PEMANTAUAN DAN PENGONTROLAN SECARA REAL-TIME MENINGKATKAN EFISIENSI DAN MEMAKSIMALKAN KEUNTUNGAN

Tanyakan beberapa poin tersebut sebelumnya, saya yakin Anda akan bisa memperkirakan dimanakah Anda bisa mengaplikasikan SCADA. Bisa jadi Anda akan berkata lagi “Terus ngapain? So What?”. Apa yang sebenarnya ingin Anda ketahui adalah hasil secara nyata yang bagaimanakah yang bisa Anda harapkan dengan mengaplikasikan SCADA?
Berikut ini beberapa hal yang bisa Anda lakukan dengan Sistem SCADA:
• Mengakses pengukuran kuantitatif dari proses-proses yang penting, secara langsung saat itu maupun sepanjang waktu.
• Mendeteksi dan memperbaiki kesalahan secara cepat.
• Mengukur dan memantau trend sepanjang waktu.
• Menemukan dan menghilangkan kemacetan (bottleneck) dan pemborosan (inefisiensi).
• Mengontrol proses-proses yang lebih besar dan kompleks dengan staf-staf terlatih yang lebih sedikit.

Intinya, sebuah sistem SCADA memberikan Anda keleluasaan mengatur maupuan mengkonfigurasi sistem. Anda bisa menempatkan sensor dan kontrol di setiap titik kritis di dalam proses yang Anda tangani (seiring dengan teknologi SCADA yang semakin baik, Anda bisa menempatkan lebih banyak sensor di banyak tempat). Semakin banyak hal yang bisa dipantau, semakin detil operasi yang bisa Anda lihat, dan semuanya bekerja secara real-time. Tidak peduli sekompleks apapun proses yang Anda tangani, Anda bisa melihat operasi proses dalam skala besar maupun kecil, dan Anda setidaknya bisa melakukan penelusuran jika terjadi kesalahan dan sekaligus meningkatkan efisiensi. Dengan SCADA, Anda bisa melakukan banyak hal, dengan ongkos lebih murah dan, tentunya, akan meningkatkan keuntungan!

Contoh Arsitektur SCADA

Bagaimana SCADA bekerja?

Sebuah sistem SCADA memiliki 4 (empat) fungsi , yaitu:
1. Akuisisi Data,
2. Komunikasi data jaringan,
3. Peyajian data, dan
4. Kontrol (proses)

Fungsi-fungsi tersebut didukung sepenuhnya melalui 4 (empat) komponen SCADA, yaitu:
1. Sensor (baik yang analog maupun digital) dan relai kontrol yang langsung berhubungan dengan berbagai macam aktuator pada sistem yang dikontrol;
2. RTUs (Remote Telemetry Units). Merupakan unit-unit “komputer” kecil (mini), maksudnya sebuah unit yang dilengkapi dengan sistem mandiri seperti sebuah komputer, yang ditempatkan pada lokasi dan tempat-tempat tertentu di lapangan. RTU bertindak sebagai pengumpul data lokal yang mendapatkan datanya dari sensor-sensor dan mengirimkan perintah langsung ke peralatan di lapangan;
3. Unit master SCADA (Master Terminal Unit - MTU). Kalo yang ini merupakan komputer yang digunakan sebagai pengolah pusat dari sistem SCADA. Unit master ini menyediakan HMI (Human Machine Iterface) bagi pengguna, dan secara otomatis mengatur sistem sesuai dengan masukan-masukan (dari sensor) yang diterima;
4. Jaringan komunikasi, merupakan medium yang menghubungkan unit master SCADA dengan RTU-RTU di lapangan.

SISTEM SCADA PALING SEDERHANA DI DUNIA!

Sistem SCADA yang paling sederhana yang mungkin bisa dijumpai di dunia adalah sebuah rangkaian tunggal yang memberitahu Anda sebuah kejadian (event). Bayangkan sebuah pabrik yang memproduksi pernak-pernik, setiap kali produk pernak-pernik berhasil dibuat, akan mengaktifkan sebuah saklar yang terhubungkan ke lampu atau alarm untuk memberitahukan bahwa ada satu pernak-pernik yang berhasil dibuat.
Tentunya, SCADA bisa melakukan lebih dari sekedar hal sederhana tersebut. Tetapi prinsipnya sama saja, Sebuah sistem SCADA skala-penuh mampu memantau dan (sekaligus) mengontrol proses yang jauh lebih besar dan kompleks.

AKUISISI DATA

Pada kenyataannya, Anda membutuhkan pemantauan yang jauh lebih banyak dan kompleks dari sekedar sebuah mesin yang menghasilkan sebuah produk (seperti contoh sebelumnya). Anda mungkin membutuhkan pemantauan terhadap ratusan hingga ribuan sensor yang tersebar di seluruh area pabrik. Beberapa sensor digunakan untuk pengukuran terhadap masukan (misalnya, laju air ke reservoir), dan beberapa sensor digunakan untuk pengukuran terhadap luaran (tekanan, massa jenis, densitas dan lain sebagainya).

Beberapa sensor bisa melakukan pengukuran kejadian secara sederhana yang bisa dideteksi menggunakan saklar ON/OFF, masukan seperti ini disebut sebagai masukan diskrit atau masukan digital. Misalnya untuk mengetahui apakah sebuah alat sudah bekerja (ON) atau belum (OFF), konveyornya sudah jalan (ON) atau belum (OFF), mesinnya sudah mengaduk (ON) atau belum (OFF), dan lain sebagainya. Beberapa sensor yang lain bisa melakukan pengukuran secara kompleks, dimana angka atau nilai tertentu itu sangat penting, masukan seperti ini disebut masukan analog, bisa digunakan untuk mendeteksi perubahan secara kontinu pada, misalnya, tegangan, arus, densitas cairan, suhu, dan lain sebagainya.

Untuk kebanyakan nilai-nilai analog, ada batasan tertentu yang didefinisikan sebelumnya, baik batas atas maupun batas bawah. Misalnya, Anda ingin mempertahankan suhu antara 30 dan 35 derajat Celcius, jika suhu ada di bawah atau diatas batasan tersebut, maka akan memicu alarm (baik lampu dan/atau bunyi-nya). Terdapat empat alarm batas untuk sensor analog: Major Under, Minor Under, Minor Over, dan Major Over Alarm.

KOMUNIKASI DATA

Dari contoh sederhana pabrik pernak-pernik, yang dimaksud ‘jaringan’ pada kasus tersebut adalah sekedar kabel yang menghubungkan saklar dengan panel lampu. Kenyataannya, seringkali Anda ingin memantau berbagai macam parameter yang berasal dari berbagai macam sensor di lapangan (pabrik), dengan demikian Anda membutuhkan sebuah jaringan komunikasi untuk melakukannya.
Pada awalnya, SCADA melakukan komunikasi data melalui radio, modem atau jalur kabel serial khusus. Saat ini data-data SCADA dapat disalurkan melalui jaringan Ethernet atau TCP/IP. Untuk alasan keamanan, jaringan komputer untuk SCADA adalah jaringan komputer lokal (LAN - Local Area Network) tanpa harus mengekspos data-data penting di Internet.

Komunikasi SCADA diatur melalui suatu protokol, jika jaman dahulu digunakan protokol khusus yang sesuai dengan produsen SCADA-nya, sekarang sudah ada beberapa standar protokol yang ditetapkan, sehingga tidak perlu khawatir masalah kecocokan komuninkasi lagi.

Karena kebanyakan sensor dan relai kontrol hanyalah peralatan listrik yang sederhana, alat-alat tersebut tidak bisa menghasilkan atau menerjemahkan protokol komunikasi. Dengan demikian dibutuhkan RTU yang menjembatani antara sensor dan jaringan SCADA. RTU mengubah masukan-masukan sensor ke format protokol yang bersangkutan dan mengirimkan ke master SCADA, selain itu RTU juga menerima perintah dalam format protokol dan memberikan sinyal listrik yang sesuai ke relai kontrol yang bersangkutan.

Gambar Contoh Jaringan pada Sistem SCADA

PENYAJIAN DATA

Untuk kasus pabrik pernak-pernik kita, satu-satunya tampilan adalah sebuah lampu yang akan menyala saat saklar diaktifkan. Ya, tentu saja kenyataannya bisa puluhan hingga ratusan lampu, bayangkan siapa yang akan Anda minta untuk mengawasi lampu-lampu tersebut, emangnya lampu hiasan? Bukan khan?
Sistem SCADA melakukan pelaporan status berbagai macam sensor (baik analog maupun digital) melalui sebuah komputer khusus yang sudah dibuatkan HMI-nya (Human Machine INterface) atau HCI-nya (Human Computer Interface). Akses ke kontrol panel ini bisa dilakukan secara lokal maupun melalui website. Bahkan saat ini sudah tersedia panel-panel kontrol yang TouchScreen. Perhatikan contoh-contoh gambar dan penjelasan pada STUDI KASUS.

Gambar Contoh akses SCADA melalui website KONTROL

Sayangnya, dalam contoh pabrik pernak-pernik kita tidak ada elemen kontrol. Baiklah, kita tambahkan sebuah kontrol. Misalnya, sekarang operator juga memiliki tombol pada panel kontrol. Saat dia klik pada tombol tersebut, maka saklar di pabrik juga akan ON.
Okey, jika kemudian Anda tambahkan semua kontrol pabrik ke dalam sistem SCADA melalui HMI-nya, maka Anda mendapatkan sebuah kontrol melalui komputer secara penuh, bahkan menggunakan SCADA yang canggih (hampir semua produk perangkat lunak SCADA saat ini sudah canggih-canggih) bisa dilakukan otomasi kontrol atau otomasi proses, tanpa melibatkan campur tangan manusia. Tentu saja, Anda masih bisa secara manual mengontrolnya dari stasion master.

Tentunya, dengan bantuan SCADA, proses bisa lebih efisien, efektif dan meningkatkan profit perusahaan.

Bagaimana mengevaluasi Sistem dan Perangkat Keras SCADA?

Okey, sekarang persoalannya adalah petunjuk bagaimana memilih dan memilah sistem SCADA yang baik. Apalagi sistem SCADA akan Anda gunakan hingga 10 sampai 15 tahun yang akan datang, tentunya Anda harus mencari produk-produk yang terkenal reputasinya. Namun hal ini akan berdampak pada investasi yang harus dilakukan, sebuah produk dengan reputasi handal dan terkenal tentu harganya jauh lebih mahal dibandingkan produk-produk SCADA baru yang saat ini mulai banyak bermunculan.
Ada beberapa hal penting yang perlu Anda perhatikan, antara lain:
• Anda bisa menghabiskan masa depan pabrik dengan ongkos berlebih yang tidak perlu;
• Kadangkala setelah menghabiskan dana yang sangat besar, akhirnya Anda hanya mendapatkan sebuah sistem yang kurang atau bahkan tidak memenuhi apa yang diinginkan;
• Atau barangkali saat ini sistem betul-betul memenuhi kebutuhan, tetapi tidak untuk pengembangan masa depan.

Catatan singkat mengenai Sensor dan Jaringan

Sensor dan relai kontrol merupakan komponen yang penting. Tentu saja, ada beberapa sensor yang lebih baik daripada lainnya, namun tersedianya datasheet untuk sebuah sensor akan membantu Anda mengenali lebih detil dari sensor yang bersangkutan, sehingga Anda bisa memilih mana yang terbaik.
Sebuah jaringan (LAN/WAN) berbasis TCP/IP merupakan jaringan yang mudah digunakan, dan jika pabrik Anda belum semuanya memiliki jaringan, transisi ke jaringan LAN bisa jadi merupakan tujuan jangka panjang perusahaan. Namun Anda tidak perlu langsung menerapkan jaringan LAN semuanya untuk mendapatkan keuntungan dari penggunaan SCADA. Sistem SCADA yang baik akan mendukung jaringan lama Anda dan jaringan LAN, sehingga Anda bisa melakukan transisi secara bertahap.

Berikut saya sampaikan beberapa petunjuk (dari pengalaman dan beberapa rujukan dari online maupun offline) dalam membangun sistem SCADA terutama masalah pemilihan RTU dan MTU.

Apa yang perlu Anda perhatikan dalam memilih SCADA RTU

SCADA RTU Anda harus mampu berkomunikasi dengan segala macam peralatan yang di pabrik dan bisa bertahan terhadap berbagai macam kondisi industri (panas, dingin, tekanan dan lain sebagainya). Berikut ceklis untuk pemilihan RTU yang berkualitas:
• Kapasitas yang cukup untuk mendukung berbagai macam peralatan di pabrik (dalam cakupan SCADA yang diinginkan), tetapi tidak lebih dari yang dibutuhkan. Jangan sampai Anda membeli RTU dengan kapasitas yang berlebih sedemikian hingga akhirnya tidak akan pernah digunakan, ini adalah pemborosan.
• Konstruksi yang tahan banting dan kemampuan bertahan terhadap suhu dan kelembaban yang ekstrim. Sudah jelas khan? Kalo tidak tahan banting dan tidak bisa bertahan buat apa pasang RTU tersebut? Bisa jadi hasil pengukuran menjadi tidak akurat dan alat jebol.
• Catu daya yang aman dan berlimpah. Sistem SCADA seringkali harus bekerja penuh 24 jam setiap hari. Seharusnya digunakan RTU yang mendukung penggunaan daya dari baterei, idealnya, ada dua sumber catu daya (listrik dan baterei).
• Port komunikasi yang cukup. Koneksi jaringan sama pentingnya seperti catu daya. Port serial kedua atau modem internal bisa menjaga agar RTU tetap online walaupun jaringan saat itu sedang rusak atau gagal. Selain itu, RTU dengan port komunikasi beragam dapat mendukung strategi migrasi LAN.
• Memori nonvolatile (NVRAM) untuk menyimpan firmware. NVRAM dapat menyimpan data walaupun catu daya dimatikan. Firmware baru (hasil modifikasi dan lain sebagainya) dapat diunduh ke penyimpan NVRAM melalui jaringan, sehingga kemampuan RTU akan selalu up-to-date (terbaharui) tanpa harus mengunjungi lokasi RTU yang bersangkutan.
• Kontrol cerdas. Sistem SCADA yang canggih saat ini bisa melakukan kontrol dengan sendirinya sesuai dengan program atau pengaturan yang dimasukkan, terutama tanggapan terhadap berbagai macam masukan sensor-sensor. Ini jelas tidak perlu untuk semua aplikasi, namun menawarkan kemudahan operasional.
• Jam waktu-nyata (real-time clock). untuk pencetakan tanggal/waktu pada laporan secara tepat dan akurat;
• Pewaktu watchdog yang memastikan RTU bisa start-ulang setelah terjadinya kegagalan daya (power failure).

Tipikal arsitetur RTU

Apa yang perlu Anda perhatikan dalam memilih SCADA MTU

SCADA master atau MTU harus mampu menampilkan berbagai informasi dalam bentuk yang familiar bagi pengguna atau operator-nya. Beberapa hal yang perlu diperhatikan berkaitan dengan SCADA MTU:
• Fleksibel, tanggapan terhadap sensor bisa diprogram. Cari sistem yang menyediakan perangkat yang mudah untuk memprogram soft alarm (laporan kejadian yang kompleks yang merupakan kombinasi antara masukan sensor dan pernyataan tanggal/jam) dan soft control (tanggapan terhadap sensor yang bisa diprogram).
• Bekerja penuh 24/7, peringatan melalui SMS (pager) dan pemberitahuan email secara otomatis. Anda tidak perlu mempekerjakan orang untuk mengamati papan pemantauan 24 jam sehari. Jika peralatan membutuhkan campur tangan manusia, maka secara otomatis sistem akan mengirimkan peringatan melalui SMS atau email ke penanggung-jawab yang bersangkutan.
• Tampilan informasi secara detil. Tentunya Anda ingin sebuah sistem yang menampilkan dalam bahasa harian Anda (Inggris, Indonesia, dll) yang jelas dan sederhana, dengan penjelasan yang lengkap terhadap aktivitas yang sedang terjadi dan bagaimana Anda seharusnya menangani atau menanggapinya.
• Tapis untuk alarm mengganggu (tidak perlu). Alarm-alarm yang mengganggu akan membuat para staff menjadi tidak peka lagi terhadap pelaporan alarm, dan mereka mulai percaya bahwa semua alarm merupakan alarm menganggu. Akhirnya mereka akan berhenti menanggapi semua alarm termasuk alarm yang kritis (alarm yang benar-benar harus mendapatkan perhatian). Gunakan SCADA yang dapat menapis dan memilah-milah alarm-alarm mana yang mengganggu dan yang kritis.
• Kemampuan pengembangan kedepan. Sebuah sistem SCADA merupakan investasi jangka panjang (10 hingga 15 tahun). Sehingga Anda perlu memastikan kemampuan SCADA untuk pengembangan dalam jangka waktu 15 tahun kedepan.
• Pencadangan yang beragam. Sistem SCADA yang baik mendukung berbagai macam pencadangan master, di beberapa lokasi. Jika master SCADA utama gagal, master yang kedua dalam jaringan akan mengambil alih secara otomatis, tanpa adanya interupsi fungsi pemantauan dan pengontrolan.
• Mendukung berbagai macam tipe protokol dan peralatan. Jika jaman dulu SCADA hanya dbuat untuk protokol-protokol tertentu yang tertutup. Solusi vendor tunggal bukan merupakn ide yang bagus - seringkali vendor tidak lagi menyediakan dukungan untuk produk-produk mereka. Dukungan terhadap berbagai macam protokol yang terbuka akan mengamankan sistem SCADA Anda dari keusangan yang tak-terencana.

Tipikal arsitektur MTU

Daftar Istilah SCADA

Berikut adalah daftar istilah pada SCADA beserta definisinya:

ANOFT (Analog Output Fault)-> Po, Pr dan N level terganggu.

App (Appear) -> Alarm muncul.

AR (Auto Reclose) -> CB penghantar keluar sesaat dan kemudian masuk lagi.

ARO (Auto Reclose Switch Out) -> Peralatan auto/reclose untuk penghantar dimatikan ( auto reclose tidak bekarja) hanya GI. 500 kV.

BBT (Bus Bar Trip) -> Peralatan proteksi BusBar.
BF (Bay Fault) -> Monitor tegangan DC 110 V masing-masing Bay ( bila alarm semua peralatan GI untuk Bay tsb. tidak bisa dioperasikan.

BI (Bus Isolator Switch Close / Open) -> Signal status BI (pemisah rel).

BRF (Breaker Fault) -> Monitor gangguan CB ( bila alarm muncul CB tidak bisa Remote O/C).

CB (Circuit Breaker Close / Open) -> Signal status CB (PMT).

CD (Control Disable Switch) ->
· Bila muncul CD semua fasilitas remote di lokasi tsb tidak bisa.
· Ini terjadi bila kunci CD pada panel RTU diposisikan Disable (dilaksanakan pada saat pemeliharaan RTU).

COM (Communication Alarm) -> Alarm timbul apabila terjadi gangguan peralatan komunikasi ( PLC, Radio, Optik ).

CPA (Cable Pressure Alarm) -> Alarm tekanan minyak atau gas untuk kabel tanah.

CPT (Cable Pressure Trip) -> Alarm tekanan minyak atau gas untuk kabel tanah.

CSO (Check Synchronizing override On/Off) -> Signal balik perintah dari operator.

· Close : permintaan agar relay check sinchro dihubung singkat

· Open : permintaan agar relay check sinchro bekerja secara real .

CSP (Check Synchronizing In Progress) -> Pemberitahuan bahwa peralatan Synchro bekerja (untuk close order).

DCBC (Dummy Breaker Close / Open) -> Signal balik status dari Dummy Breaker ( test remote control di masing2 RTU.

Disp (Disappear) -> Alarm hilang.

DT (Diameter Trip) -> Dipasang dimasing-masing diameter. Hanya GI. 500 kV.

EPF (EPC Fault ( RTU Alarm)) -> Yang dapat dimonitor di Master station hanya temperatur alarm.

ES (Earth Switch Close / Open) -> Indikasi dari pemisah tanah Close/Open.

FDC (Fault Data Captured)

Frequ (Frequency) -> Nilai frekuensi

GRE (Generator Ready) -> Signal dari generator bahwa generator siap start (RC start)

GTF (Generator Transformer Fault) -> Gangguan trafo generator.

GTT (Generator Transformer Trip) -> Trafo generator trip.

GUR (Generator Unit Run) -> Indikasi balik perintah master generator Start

GUS (Generator Unit Stop) -> Indikasi balik perintah master generator Stop

I -> Arus

INIT -> Initialization, Bila alarm ini sering muncul maka RTU harus di reload program.

L1 (Lower limit #1) -> Limit bawah pertama (contoh: frek = 49,8 Hz)

L2 (Lower limit #2) -> Limit bawah kedua (contoh: frek = 49,5 Hz)

LFA (Load Frequency Control Available On/Off) -> Signal kondisi peralatan LFC Unit.
· On : LFC siap dioperasikan
· Off : LFC gangguan

LFC (Load Frequency Control On/Off) -> Signal kondisi peralatan LFC Unit.
· On : LFC beroperasi
· Off : LFC tidak dioperasikan

LFF (Load Frequency Unit Fault) -> Alarm bahwa LFC tidak dapat difungsikan (Load cordinator alarm).

LFR (Load Frequency Control Request On/Off) -> Signal balik perintah dari operator.
· On : permintaan agar LFC dioperasikan
· Off : permintaan agar LFC dimatikan.

LI (Line Isolator Switch Close / Open) -> Signal status dari Line Isolator.

LK1FT/LK2FT (Link 1 Fault/Link 2 Fault) -> Konfigurasi jaringan untuk RTU bersangkutan di master berwarna merah (gangguan link).

LR (Local Remote Switch CB) -> Signal posisi Switchh masing-masing CB, atau dipasang common seluruh CB untuk mengetahui posisi Lokal/Remote

LRG (Local Remote Switch for Generator) -> Signal posisi Lokal/Remot untuk Generator yang dapat di Strat/Stop dari Master station.

LRT (Local Remote Switch for Tap Changer) -> Signal posisi Lokal/Remot Tap yang dapat di naik/turun kan dari Master station.

LT (Line Trip) -> Gangguan peralatan proteksi masing-masing penghantar. Hanya GI. 500 kV.

MC (Message class) -> Kelas event (ditentukan di control center)

MPS (Main Substation Power Supply) -> Gangguan Supply 110 VDC.

N (Load frequency control N_level)

OSC (Off Supervisory control)

P (Daya Aktif)

P1 (Protection Type 1 Trip) -> Signal karena bekerjanya Relay Main Protection.

P2 (Protection Type 2 Trip) -> Signal karena bekerjanya Relay Back-up Protection.

P3 (Protection Type 3 Trip) ->

POAQ (Real power setting)

POOP (Real power set point)

PRAQ (Maksimum power variation setting)

PROP (Maksimum power variation set point)

PSF (Protection Signaling Fault) -> Signal gangguan proteksi Feeder (penghantar)

PSO (Power Set Switch On / Off) -> Signal dari Unit bahwa LFC siap dioperasikan.

PUM (Plant Under Maintenance) -> Signal bahwa sedang dilakukan pemeliharaan PMT ( common seluruh PMT) di lokasi tersebut. Apakah msh diperlukan, karena alarm tsb. Untuk pola scada baru sdh tdk ada.

Q (Daya Reaktif)

RACK (Circuit Breaker Rack In / Out) -> Signal status PMT/CB dorong.

RC_FT (Remote Control Fault) -> Kalau alarm muncul remote control di lokasi tsb selalu gagal

RCPFT (Remote Control Polarity Fault) ->
· Di Master muncul alarm RC
· Remote control di lokasi tersebut terganggu

RF (Reactor Fault) -> Reactor alarm

RT (Reactor Trip)

RTF (Remote Terminal Unit Fault) -> Yang dapat dimonitor di Master station hanya temperatur alarm.

SHTXC (Kapasitor)

SNF (Substation Non Urgent Fault) -> Seluruh alarm digabung menjadi satu, bila salah satu peralatan terganggu di JCC timbul SUF. Hanaya GI. 500 kV.

SPS (Supervisory Power Supply) -> Gangguan Supply 48 VDC.

SUF (Substation Urgent Fault) -> Seluruh alarm digabung menjadi satu, bila salah satu peralatan terganggu di JCC timbul SUF. Hanya untuk GI. 500 KV.

TAF (Transformer AVC Fault) -> Gangguan pengaturan Tegangan (AVC Cubicle) hanya GI. 500 kV.

TC (Tap changer raise/lower)

TC_FT (Tap Changer Fault) -> Posisi Tap invalid atau tidak dapat dimonitor.

TCA (Tap Changer Alarm)

TCC (Tap Changer Common Auto / Remote) -> Signal balik perintah dari operator
· Auto : Tap trafo interbus beroperasi secara auto mengikuti perubahan tegangan.
· Remote : perubahan Tap secara remote dari master.

TCC (Tap changer auto/manual)

TCH (Tap Changer High Limit) -> Posisi Tap Maximum

TCL (Tap Changer Low Limit) -> Posisi Tap Minimum

TCT (Tap Changer Trip)

TEA (Transformer Temperature Alarm) -> Alarm di Trafo Interbus

TEAFT (Temperatur Alarm Fault) -> Pemberitahuan suhu ruang RTU tinggi

TET (Transformer Temperature Trip)

TEWFT (Temperatur Warning Fault) -> Pemberitahuan suhu ruang RTU tinggi

TK_FT (Telecounting fault) -> KWH meter (u/SCADA jarang dipergunakan).

TM_FT (Telemetering fault) -> Tampilan pengukuran di master O(nol) atau Invalid. Muncul alarm TM

TPF (Telephone or Teleprinter Fault) -> Alarm peralatan komunikasi hanya GI 500 kV.

TPI (Tap Position Indication (Digital)) -> Posisi real tap trafo interbus

TPI (Tap position indication)

TRA (Transformer Alarm) -> Alarm trasformator tapi tidak mengakibatkan trafo trip

TRO (Trip Relay Operated) -> Disambung ke masing PMT diameter.

TRT (Transformer Trip) -> Alarm trasformator dan dapat mengakibatkan trafo trip.

TS_FT (Telesignaling Fault) ->
· Telesignal Invalid.
· Muncul alarm TS

TSCFT (Telesignaling Counter Fault) -> Telesignal invalid.

TTR (Teleprotection Trip Received) -> Teleproteksi bekerja menerima signal trip dari station lawan.

TTT (Teleprotection Trip Transmited) -> Teleproteksi mengirim signal trip ke station lawan

U1 (Upper limit #1) -> Limit atas pertama (contoh: frek = 50,2 Hz)

U2 (Upper limit #2) -> Limit atas kedua (contoh: frek = 50,5 Hz)

UT (Unit Trip)

V (Tegangan)

VS (Voltage Status ( BB )) -> Mengetahui status tegangan Busbar ( dead/live )

VTF (Voltage Transformer Fault) -> Gangguan travo tegangan masing diameter. Hanya GI. 500 kV.

 

Rabu, 06 Juli 2011

Relay

INDUCTION TYPE DIRECTIONAL OVER CURRENT RELAY



The directional power relay is not suitable under short circuit conditions because as short circuit occurs the system voltage falls to a low value resulting in insufficient torque to cause relay operations. This difficulty is overcome in the directional over current relay, which is independent of system voltage and power factor.
Constructional details: – Figure shows the constructional details of a typical induction type directional over current relay. It consists of two relay elements mounted on a common case viz. (i) directional element and (ii) non-directional element.
(i) Directional element: It is essentially a directional power relay, which operates when power flows in a specific direction. The potential of this element is connected through a potential transformer (PT.) to the system voltage. The current coil of the element is energized through a CT by the circuit current. This winding is carried over the upper magnet of the non-directional element. The trip contacts (1 and 2) of the directional element are connected in series with secondary circuit of the over current element. The latter element cannot start to operate until its secondary circuit is completed. In other words, the directional element must first operate (ie. contacts 1 and 2 should close) in order to operate the over current element.
(ii) Non-directional element: – It is an over current element similar in all respects to a non-directional over current relay. The spindle of the disc of this element carries a moving contact which closes the fixed contact after the operation of directional element. Plug setting bridge is provided for current setting. The tappings are provided on the upper magnet of over current element and are connected to the bridge.
Operation:-Under normal operating conditions, power flows in the normal direction in the circuit operated by the relay. Therefore, directional power relay does not operate, thereby keeping the (lower element) un-energized. However, when a short circuit occurs, there is a tendency for the current or power to flow in the reverse direction. The disc of the upper element rotates to bridge the fixed contacts 1 and 2. This completes the circuit for over current element. The disc of this element rotates and the moving contact attached to closes the trip circuit. This operates the circuit breaker which isolates the faulty section.










INDUCTION TYPE DIRECTIONAL POWER RELAY




The step of relay operates when the, power in the circuit flows, in a specific direction. A directional power relay is so designed that it obtains its operating torque by the interaction of magnetic field derived from both voltage and current source of the circuit it protects. The direction of torque depends upon the current relative to voltage.
Constructional Details:- Figure shows the essential pails of a typicalinduction type directional power relay. It consists of an aluminum disc, which is free to rotate in between the poles of two electromagnet. The upper electromagnet carries a winding called potential coil on the central limb, which is connected through a potential transformer (PT.) to the circuit voltage source. The lower electromagnet has a separate winding called current coil connected to the secondary of CT. in the line to be protected.. The current coil is provided with a number of tappings connected to the plug setting bridge. This permits to have any desired current setting. The restraining torque is provided by a spiral spring. The spindle of the disc carries a moving contact which bridges two fixed contacts when the disc has rotated through a preset angle. By adjusting this angle, desired time setting can be obtained.
Operation:- The flux Ф1 due to current in the potential coil will be nearly 90° lagging behind the applied voltage V. The flux Ф2 due to current coil will be nearly in phase with the operating current I, as in the vector diagram. The interaction of fluxes Ф1 and Ф2 with the eddy currents induced in the disc produces a driving torque given by:
α Ф1 Фsin α.
Ф1 α V, Ф2 α I and α.= 90 – θ
α V I sin (90 – θ)
α V I cos θ
α Power in the circuit
It is clear, that the direction of driving torque on the disc depends on the direction of power flow in the circuit to which the relay is associated. When the power in the circuit flows in the normal direction the driving torque and the restraining torque help each other to turn away the moving contact from the fixed contacts. Thus the relay remains in operative. But with reversal of current in the circuit the direction of driving torque on the disc reverses. When the reversed driving torque is large enough, the disc rotates in reverse direction, and then the moving contact closes the trip circuit

OVER LOAD INVERSE-TIME / INVERSE DEFINITE MINIMUM TIME LAG (I.D.M.T.) RELAY
The over load inverse time relay is shown in fig 26. It consists of an upper electromagnet that has been provided with two windings one primary and the other secondary. Primary is connected to a current transformer in the line which is under protection and is provided with eight tappings. These tappings are connected to a plug setting bridge by which the number of turns to be used can be adjusted in order to have the desired current setting. The second winding called secondary is energized by the induction effect and is wound over the central limb of the upper magnet as well as it is spread over the two limbs of the lower magnet. By this method, the leakage flux from the upper magnet entering the disc have been displaced in phase from the flux entering the disc from the lower magnet. The deflecting torque is produced on the disc in the fashion as already explained. The spindle of the disc carries a moving contact which bridges two fixed contacts after the disc has rotated through a certain angle which has been set before. Any setting for this angle is possible varying from 0 to 360°. The variation of this angle imparts to the relay, various time settings.
The speed of rotation of the disc is dependent upon the torque which in turn is dependent on the current setting, when the load current increases from this setting it will increase the speed of rotation of the disc resulting into decrease of operation time. Thus the time current characteristics of the relay observe inverse-Square law. The definite minimum time characteristics of the relay are obtained by the use of a saturated upper magnet. This ensures that there is no further increase in f1ux when the current has reached a certain value and any further increase of current will not affect the relay operation. This results in a flattened current time characteristic and the relay obtains its name asInverse definite minimum time lag (I.D.M.T.) relay
The current time characteristics of the relay have been illustrated in Fig. 27. It represents the time required to close the trip contacts for different values of over current. Its horizontal scale is marked in terms of current-setting multipliers i.e. number of times the relay current is in excess of current setting










       Distance relays are characterized by having two input quantities proportional to the voltage and current at a particular point in the power system, referred to as the relaying point. Ideal static distance relays have characteristics independent of actual magnitudes of voltage and current but dependent only on their ratio and phase angle between them. The versatile family of distance relays includes impedance relays, reactance relays and mho relays. The measurement of impedance, reactance or admittance is done by comparing input current and voltage. Hence distance relays have voltage and current as input quantities. In a static distance relay it is necessary that the two input quantities are similar i.e., voltage/voltage or current/current because they are not electrically separate as they are in case of electro—magnetic relays (in an impedance relay magnets are energized by voltage and currents). A practical static distance protection scheme includes a starting, measuring and timing elements made up of solid-state devices. The output unit is usually a moving coil relay. The starting element is usually an over current relay. The output is given to the measuring element. Phase comparators are employed in the measuring devices. The measuring device determines whether the fault is within the protected zone or not. A tripping signal is initiated in case the fault is within the protected zone. In case the fault is outside protected zone, the timer unit starts which initiates zone-wise protection.
A block diagram of a distance relay based on current comparison principle is given in fig 25. The line PT secondary is connected to auxiliary PT and the output of auxiliary PT is converted into current and this current is compared with the output of the auxiliary CT.
Static distance relays do not have any moving part so they operate much faster (operating time of the order of some milli-seconds) and without risk of incorrect tripping as compared to electro-magnetic relays. Static distance relays are accurate over a wider range of fault currents and line lengths and require much lower burden as compared to their counterparts in electro-magnetic relays. Static distance relays are compact in size and have better stability under power swing conditions. Static distance relays are extensively used for protection of medium and long transmission lines, parallel feeders and unit back-up protection as well as inter-connected and T-connected lines.

STATIC DIFFERENTIAL RELAY




The differential relay measures the phasor difference between two similar electrical quantities(voltage-voltage or current-current). The block diagram for such a relay is shown in fig 24. Inputs I and II are supplied to the comparator. The output of the comparator (phase difference of inputs I and II) is amplified and used to operate the relay.
The static differential relays are most commonly used for the protection of generators and transformers for any type of internal faults (two-and three-phase faults, earth faults with solidly grounded neutral or low resistance grounded neutral inter turn faults).
These relays are advantageous over electromagnetic differential relays as they are very compact, highly sensitive for internal faults and have absolute stability for heavy through faults, extremely short tripping times (20-50 ms) regardless magnitude of auxiliary voltage, accurate and absolutely stable tripping characteristic even for asymmetrical faults as each phase can have its own relay, low VA burden, inrush current proof characteristic even during high starting currents, inrush currents. The selection of auxiliary voltage is also easy. A permanent magnet moving coil relay is usually employed as tripping device.
The difference of the currents in the operating coil and restraining coil is fed to the output element for the relay operation. They relay operates when Ko no Io > Kr nr Ir + Kwhere no and nr are the number of turns on the operating and restraining coils respectively and Ko and Kr the design constants and Kt the spring control torque constant.
At the threshold of operation Kt = Ko no Iomin . The differential current schemes do not react to the peak currents caused by overloads or swings, also due to dissimilarity in CTs, inrush-magnetizing current in transformer protection.


The over-current relays, even though simplest of all types of electro-mechanical relays, are the most difficult static relays. Static over current relays are of two types:
(i) Instantaneous over-current relays and
(ii) Time over-current relay.
STATIC INSTANTANEOUS OVER-CURRENT RELAY
The block diagram of an instantaneous over-current relay is shown in fig 21. The same construction may be used for under-voltage, over-voltage and earth fault relays too.
The secondaries of the line CT’s are connected to a summation circuit (not shown in the fig). The output of this summation CT is fed to an auxiliary CT, whose output is rectified smoothened and supplied to the measuring unit (level detector). The measuring unit determines whether the quantity has attained the threshold value (set value) or not. When the input to measuring unit is less than the threshold value, the output of the level detector is zero.
For an over-current relay
For I input < I threshold; Ioutput = 0
For I input > I threshold; Ioutput = Present
In an actual relay I threshold can be adjusted.
After operation of the measuring unit, the amplifier amplifies the output. Amplified output is given to the output circuit to cause trip/alarm. If time-delay is desired, a timing circuit is introduced before the level detector. Smoothing circuit and filters are introduced in the output of the bridge rectifier. Static over-current relay is made in the form of a single unit in which diodes, transistors, resistors, capacitors etc., are arranged on printed board and are bolted with epoxy resin.

STATIC OVER-CURRENT TIME RELAY

The block diagram of static over current time relay is shown in fig 22.
The current from the line CT is reduced to 1/1000 th by an auxiliary CT, the auxiliary has taps on the primary for selecting the desired pick-up and current range and its rectified output is supplied to level detector I (over-load level detector) and an R-C timing circuit. When the voltage on the timing capacitor Vc attains the threshold value of the level detector II, tripping occurs. Time delay given by the timing circuit shown in fig 22 b is given as Tc = RC log e E/(E – VT) .
Where VT is the threshold value of the level detector II. By varying values of R and C the time can be varied without difficulties


STATIC RELAYS



A static relay refers to a relay in which there is no armature or other moving element and response is developed by electronic, magnetic and other components without mechanical motion. The solid-state components used are transistors, diodes, resistors, capacitors and so on. Static circuits accomplish the function of comparison and measurement. A relay using combination of both static and electro-magnetic units is also called a static relay provided that static units accomplish the response.
In static relays, the measurement is performed by electronic, magnetic, optical or other components without mechanical motion. Additional electro-mechanical relay units may be employed in output stage as auxiliary relays. A protective system is formed by static relays and electro-mechanical auxiliary relays.
BASIC STATIC RELAY
The essential components of static relays are shown in fig 20. Rectifier rectifies the relaying quantity i.e., the output from a CT or PT or a transducer. The rectified output is supplied to a measuring unit comprising of comparators, level detectors, filters, logic circuits. The output is actuated when the dynamic input (i.e., the relaying quantity) attains the threshold value. This output of the measuring unit is amplified by amplifier and fed to the output unit device, which is usually an electro-magnetic one. The output unit energizes the trip coil only when relay operates.

In a static relay the measurement is carried out by static circuits consisting of comparators, level detectors, filter etc while in a conventional electro-magnetic relay it is done by comparing operating torque (or force) with restraining torque (or force). The relaying quantity such as voltage/current is rectified and measured. When the quantity under measurement attains certain well-defined value, the output device is triggered and thereby the circuit breaker trip circuit is energized.

NEGATIVE PHASE SEQUENCE RELAY

Whenever there is an unbalance in circuit, the unbalanced currents will have a negative phase sequence component. A negative phase sequence (or phase unbalance) relay is essentially provided for the protection of generators and motors against unbalanced loading that may arise due to phase-to-phase faults. Such relay has a filter circuit, which is responsive only to the negative sequence components. Since small magnitude over-current can cause dangerous conditions, it becomes necessary to have low setting of such relays. An earth relay can also provide the desired protection but only in case when there is a fault between any phase and earth. For phase-to-phase faults an earth relay cannot provide necessary protection and hence negative phase sequence relay is required.
Fig. 19 a. illustrates the scheme used for negative phase sequence relay. A network consisting of four impedances Z1, Z2, Z3 and Z4 equal magnitude connected in a bridge of formation, which is energized from three CTs. A single pole relay having an inverse-time characteristic connected across the circuit, as illustrated in be figure. Z1 and Z3are non-inductive resistors while Z2and Z4 are composed of both resistance and inductance. The values of Z2 and Z4 are so adjusted that currents flowing through them lag behind those in impedances Z3and Z1, by 60º.
The relay is assumed to have negligible impedance. The current from phase R at junction A is equally divided into two branches, as I1 and I4 but I4will lag behind I1 by 60°.

From fig 19 b, I 1= I4 = I /⌡3

Similarly the current from phase B divide at junction C into two equal components I3 and I2; I2 lagging behind l3 by 60º.

2= I3 = I B/⌡3
Note that 1 lead by 30º while I4lags behind R by 30º. Similarly lag behind I B by 30º whereas I3 leads Bby 30°.
The current through relay operating coil at junction B will be equal to phasor sum of
1, I and I Y.
i.e. IRELAY = + I + I Y
= I /⌡3 leading I R by 30º + I B/⌡3 lagging behind I B by 30º + I Y
Flow of + ve Sequence Currents – Fig 19 c, represents the phasor diagram when the load is balanced or when there is no negative sequence current. Since the current through the relay + I + I Y= 0 because I + I – Y
So, the relay remains in operative for a balanced system.
Flow of – ve Sequence Currents – Fig 19 d, represents the phasor diagram for negative sequence currents. It is noted that at junction B current I and current 2are equal but opposite to each other, so they cancel each other and current Yflows through the relay operating coil. Thus the relay operates due to flow of currentY through it. A low setting value well below the normal full-load rating of the machine is provided since comparatively small values of unbalance currents produce a great danger.
Flow of Zero Sequence Currents – The current at junction B of the relay is represented in phasor diagram fig 19 e, from which it is observed that the currents I and I are displaced from each other by 60º, so that the resultant of these currents is in phase with the current in phase Y. Thus a total current of twice the zero sequence current would flow through the relay and would therefore cause its operation.
To make the relay inoperative under the influence of zero sequence current, the CTs are connected in delta as shown in fig 19 f, because then no zero sequence current can flow in the network circuit















Fig. 18 shows the arrangement of voltage balance protection. In this scheme of protection, two similar current transformers are connected at either end of the element to be protected (e.g. an alternator winding) by means of pilot of wires. The secondaries of current transformers are connected in series with a relay in such a way that under normal conditions, their induced e.m.f’s are in opposition
Under healthy conditions, equal currents will flow in both primary windings. Therefore, the secondary voltages of the two transformers are balanced against each other and no current will flow through the relay-operating coil. When a fault occurs in they protected zone, the currents in the two primaries will differ from one another and their secondary voltages will no longer be in balance. This voltage difference will cause a current to flow through the operating coil of the relay, which closes the trip circuit.
Disadvantages
The voltage balance system suffers from the following drawbacks
(i) A multi-gap transformer construction is required to achieve the accurate balance between current transformer pairs.
(i) The system is suitable for protection of cables of relatively short, lengths due to the capacitance of pilot wires.


Distance relays are those in which the operations are governed by the ratio of applied voltage to current in the protected circuit. It is also called Impedance relay. In this the torque produced by a voltage element opposes the torque produced by a current element. The relay will operate when the ratio V/I is less than a pre-determined value.
Fig.13 illustrates the basic principal of operation of an Impedance relay. The voltage element of the relay is excited through a potential transformer (P.T.) from the line to be protected. The current element of the relay excited from a current transformer (C.T) in series with the line. The portion AB of the line is the protected zone. Under normal condition the impedance of the protected zone is ZL. The relay closes when the impedance of the protected zone falls below the pre-determined value ZL. When a fault occurs at F1 in the protected zone the impedance Z will be less than ZL and hence relay operates. If the fault occurs beyond the protected zone (at F2) the impedance Z will be greater than ZL and the relay does not operate.
There are two types of distance
(i) Definite distance relay, which operates for fault up to pre-determined distance
from the relay.
(ii) Time distance relay in which time operation is proportional to the distance of fault
from the relay.


An inverse time relay is one in which the operating time is approximately inversely proportional to the magnitude of the actuating quantity. Fig. 10.a show the time current characteristics of an inverse current relay. At values of current less than pickup, the relay never operates. At higher values, the time of operation of the relay decreases steadily with the increase of current. The inverse-time delay can be achieved by associating mechanical accessories with relays.

In an induction relay, the inverse-time delay can be achieved by positioning a permanent magnet in such a way that relay disc cuts the flux between the poles of the magnet. When the disc moves, the current set up in it produce a drag on the disc, which slows its motion.
In other types of relays, the inverse time delay can be introduced by oil dashpot or a time limit fuse. Fig.10 shows an inverse time solenoid relay using oil dashpot. The piston in the oil dashpot attached to the moving plunger slows its upward motion. At a current value just equal to the pickup, the plunger moves slowly providing maximum time delay.
The inverse-time characteristics can also be obtained by connecting a time-limit fuse in parallel with the trip coil terminals as shown in Fig. 10 c. The shunt path formed by time-limit fuse is of negligible impedance as compared with the relatively high impedance of the trip coil. Therefore, so long as the fuse remains intact, it will divert practically the whole secondary current of the CT from the trip Coil. When the secondary current exceeds the current carrying capacity of the fuse will blow and the whole current will pass through the trip coil, thus opening the circuit breaker. The time lag between the incidence of excess current and the tripping of the breaker is governed by the characteristics of the fuse. Careful selection of fuse can give the desired inverse-time characteristics.